Корпус для зарядного устройства своими руками: Универсальное зарядное устройство

Содержание

Универсальное зарядное устройство

Все по-разному отдыхают в свободное от работы время. Кто-то любит полежать на диване, кто-то сходить в тренажерный зал, а автор данной самоделки, исходя из своих потребностей, умений и возможностей, решил использовать свободное время, чтобы создать новое универсальное зарядное устройство из подручных средств, что залежались в его мастерской.

Материалы и инструменты, задействованные для создания универсального зарядного устройства:

-корпус от блока питания компьютера
-дрель
-линейка
-маркер
-провод ПДСКТ 1.6 мм диаметром
-медный провод диаметром 2.2 мм
-эпоксидная смола
-вольтметр
-принтер для распечатки шкалы амперметра
-трансформатор из серии ТС-180
-тиристор КУ202Н
-термопаста
-пара радиаторов
-транзисторы кт315, кт361
-грунтовка по металлу
-переменный резистор на 33 кОм
-лист двустороннего стеклотекстолита
-краска

Рассмотрим более подробно описание создаваемого устройства и этапы его сборки.

Основной целью самоделки служила идея создания именно универсального зарядного устройства, то есть такого, каким можно было бы заряжать почти все имеющиеся в хозяйстве аккумуляторы: от небольших пальчиковых микрокадимиевых батарей и до массивных автомобильных кислотно-свинцовых. Естественно идея такого устройства далеко не нова, и есть множество различных схем его создания, одну из которых автор и решил воплотить в жизнь в один из свободных деньков.

Таким образом, было решено сделать простое, но универсальное зарядное устройство, ток зарядки которого, может плавно регулироваться от самых минимальных значений, до максимального нужного в 10А, которое будет ограничено лишь имеющимся напряжением на выходе трансформатора.

Шаг первый: подготовка корпуса устройства.

Для начала был взят корпус блока питания от стационарного компьютера, который после нескольких переделок, должен будет вместить в себя все элементы будущего зарядного устройства. Он был полностью разобран и все имеющиеся детали вынуты. Затем автор очистил его от имеющейся грязи и прикинул, как разместить основные элементы необходимые для будущего зарядного устройства.

Чтобы внутри корпуса была циркуляция воздуха для охлаждения нагревающихся элементов устройства, было решено сделать несколько отверстий на верхней части корпуса. Сначала для этого была сделана разметка при помощи линейки и маркера, так как автору хотелось добиться внешнего вида заводского устройства, поэтому все делалось максимально опрятно и ровно. После чего по нанесенной разметке при помощи дрели были сделаны два ряда небольших отверстий.

Так как устройство будет универсальным, то у него будут различные регуляторы и шкала с амперметром, которые лучше всего вывести на одну лицевую панель устройства. Поэтому при помощи все той же дрели, а так же напильников и других инструментов, что оказались под рукой автора, лицевая часть корпуса была подготовлена для будущего вывода регуляторов.

На заднюю панель будет установлен радиатор, поэтому она так же была модифицирована.

Шаг второй: изготовление амперметра.

Чтобы иметь возможность видеть показания зарядного устройства, прямо в него было решено подключить амперметр. Но так как подходящего амперметра среди имеющихся запасов не нашлось, то автор решил изготовить его из старого вольтметра на 250 В, так как он имеет линейную шкалу, следовательно, неплохо подошел бы для данного устройства. Во время переделки были удалены добавочные резисторы и выпрямитель, а выводы просто припаяны к клеммам. Шкала же была нарисована в программе Front designer, после чего распечатана принтере и наклеена на старую шкалу вольтметра.

Найденный в мастерской провод ПДСКТ длиной 2,15 м и с диаметром 1,6 мм был использован как шунт для амперметра. Этот провод был намотан на оправу, после чего закреплен нитками и залит эпоксидной смолой, таким образом, надежно зафиксировав конструкцию. Посчитав, что этого вполне хватит, и расхождения показаний в 5% не повлияют существенно на работу прибора, он приступил к следующему этапу создания зарядного устройства.

Шаг третий: подготовка и размещение основных элементов зарядного устройства в корпус.

Когда подготовительные этапы были пройдены, автор приступил к размещению основных элементов внутри корпуса устройства. Для начала он занялся переделкой имеющегося трансформатора на 27 В. Он был перемотан при помощи медного провода диаметром 2,2 мм, хотя подошел бы и 1.6 мм либо шина площадью около 4 мм квадратных. После этого он был помещен внутрь уже с 18 В напряжения во вторичной обмотке и мощностью от 120 Вт.
На всю площадь задней стенки был установлен радиатор, который состоит из двух частей соединяющихся между собой при помощи термопасты. На данный радиатор был прикреплен тиристор КУ202Н мощностью в 10 А. Кроме того, к этому же сборному радиатору был прикреплен и диодный мост на 35 А.

Для сборки регулятора тока, автором был использован генератор импульсов собранный из транзисторов кт-315 и кт-361, хотя можно использовать и другие с напряжением от 30 В и усилением больше 100. Важный нюанс, что если взять транзисторы с большим разбросом, то на небольших токах могут быть обрывы генерации, поэтому лучше использовать оба транзистора с близким усилением, но разной проводимостью.

Имеющийся в распоряжении сдвоенный переменный резистор с сопротивлением 33 кОм, был так же модифицирован для создания регулятора зарядного устройства. Чтобы понизить порог до 0,5 В, автор запаралелил резистор и было получено значение сопротивления в 16,5 кОм соответственно. Все это делалось для большего диапазона и, следовательно, большей универсальности получаемого зарядного устройства, поэтому если бы нужно было заряжать только автомобильные 12В аккумуляторы, то вполне подошел бы переменный резистор на 4,7 кОм, но автор решил сделать упор на универсальность устройства.

Шаг четвертый: создание схемы.

Так как размеры используемого корпуса ограничены, то для создания схемы, автор решил использовать печатную плату, хотя ее вполне можно изготовить и при помощи навесного монтажа.

Плату для схемы автор так же изготовил сам из тех средств, что были в наличии. На ее вытравку понадобилось около получаса, после чего она была отмыта, и автор приступил к последующей пайке, лужению и соответственно установке ее в корпус устройства.

Шаг пятый: создание передней панели для регулирования зарядного устройства и покраска.

В качестве материала лицевой панели автор выбрал стеклотекстолит. Он был вытравлен с обеих сторон в местах прикрепления клемм. Далее по нанесенной разметке были вырезаны отверстия для закрепления и установки клеммников, индикаторов, регуляторов, выключателя, предохранителя и шкалы амперметра.

После чего полученная панель была прикреплена к основному корпусу на саморезы и все элементы управления были выведены и закреплены в соответствующих им отверстиях.

Далее, взяв краску цвета черный металлик, которая осталась у автора после покраски бампера его автомобиля, он использовал ее для покраски всего корпуса полученного зарядного устройства.

Результат вы можете видеть на фотографиях, устройство имеет вполне приятный вид, и выглядит так, будто собрано на каком-то предприятии, а не в гараже.

Шаг шестой: показания испытаний.

Устройство было включено на ночь для зарядки аккумулятора 6ст90. Заряжался аккумулятор около 12-ти часов с током зарядки 8А. Каких либо поломок или неисправностей при такой нагрузке обнаружено не было. Нагрев был небольшой, благодаря хорошему теплообмену и теплоотдаче от радиаторов трансформатор нагревался не сильно. Из этого следует, что данное зарядное устройство вполне работоспособно и надежно.

Дополнительную информацию вы можете найти по ниже расположенной ссылке «источник», там же вы можете задать интересующие вас вопросы автору этого устройства.

Источник (Source)

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Самодельное зарядное устройство для автомобильного аккумулятора из БП АТХ, схемы

Многие автолюбители отлично знают, что для продления срока службы аккумуляторной батареи требуется периодическая ее подзарядка именно от зарядного устройства, а не от генератора автомобиля.

И чем больше срок службы аккумулятора, тем чаще его нужно заряжать, чтобы восстанавливать заряд.

Без зарядных устройств не обойтись

Для выполнения данной операции, как уже отмечено, используются зарядные устройства, работающие от сети 220 В. Таких устройств на автомобильном рынке очень много, они могут обладать различными полезными дополнительными функциями.

Однако все они выполняют одну работу – преобразуют переменное напряжение 220 В в постоянное – 13,8-14,4 В.

В некоторых моделях сила тока при зарядке регулируется вручную, но есть и модели с полностью автоматической работой.

Из всех недостатков покупных зарядных устройств можно отметить высокую их стоимость, и чем «навороченней» прибор, тем цена на него выше.

 

А ведь у многих под рукой есть большое количество электроприборов, составные части которых вполне могут подойти для создания самодельного зарядного устройства.

Да, самодельный прибор выглядеть будет не так презентабельно, как покупной, но ведь его задача – заряжать АКБ, а не «красоваться» на полке.

Одними из важнейших условий при создании зарядного устройства – это хоть начальное знание электротехники и радиоэлектроники, а также умение держать в руках паяльник и уметь правильно им пользоваться.

Далее рассмотрим несколько схем зарядных устройств для АКБ, которые можно создать из старых электроприборов или составных частей электроники.

ЗУ из лампового телевизора

Первой будет схема, пожалуй, самая простейшая, и справиться с ней сможет практически любой автолюбитель.

Для изготовления простейшего зарядного устройства понадобиться всего лишь две составные части – трансформатор и выпрямитель.

Главное условие, которым должно соответствовать зарядное устройство – это сила тока на выходе из прибора должна составлять 10% от емкости АКБ.

То есть, зачастую на легковых авто применяется батарея на 60 Ач, исходя из этого, на выходе из прибора сила тока должна быть на уровне 6 А. При этом напряжение 13,8-14,2 В.

Если у кого-то стоит старый ненужный ламповый советский телевизор, то лучше трансформатора, чем из него не найти.

Принципиальная схема зарядного устройства из телевизора имеет такой вид.

Зачастую на таких телевизорах устанавливался трансформатор ТС-180. Особенностью его являлось наличие двух вторичных обмоток, по 6,4 В и силой тока 4,7 А. Первичная обмотка тоже состоит из двух частей.

Вначале потребуется выполнить последовательное подключение обмоток. Удобство работ с таким трансформатором в том, что каждый из выводов обмотки имеет свое обозначение.

Для последовательного соединения вторичной обмотки нужно соединить между собой выводы 9 и 9\’.

А к выводам 10 и 10\’ – припаять два отрезка медного провода. Все провода, которые припаиваются к выводам должны иметь сечение не менее 2,5 мм. кв.

Что касается первичной обмотки, то для последовательного соединения нужно соединить между собой выводы 1 и 1\’. Провода с вилкой для подключения к сети нужно припаять к выводам 2 и 2\’. На этом с трансформатором работы завершены.

Далее нужно сделать диодный мост. Для этого потребуется 4 диода, способных работать с током в 10 А и выше. Для этих целей подойдут диодные мосты Д242 или аналоги Д246, Д245, Д243.

На схеме указано, как должно производится подключение диодов – к диодному мосту припаиваются провода, идущие от выводов 10 и 10\’, а также провода, которые будут идти к АКБ.

Не стоит забывать и о предохранителях. Один из них рекомендуется установить на «плюсовом» выводе с диодного моста. Этот предохранитель должен быть рассчитан на ток не более 10 А. Второй предохранитель (на 0,5 А) нужно установить на выводе 2 трансформатора.

Перед началом зарядки лучше проверить работоспособность устройства и проверить его выходные параметры при помощи амперметра и вольтметра.

Иногда бывает, что сила тока несколько больше, чем требуется, поэтому некоторые в цепь установить 12-вольтовую лампу накаливания с мощностью от 21 до 60 Ватт. Эта лампа «заберет» на себя излишки силы тока.

ЗУ из микроволновой печи

Некоторые автолюбители используют трансформатор от сломанной микроволновой печи. Но этот трансформатор нужно будет переделывать, поскольку он является повышающим, а не понижающим.

Необязательно, чтобы трансформатор был исправен, поскольку в нем зачастую сгорает вторичная обмотка, которую в процессе создания устройства все равно придется удалять.

Переделка трансформатора сводится к полному удалению вторичной обмотки, и намотки новой.

В качестве новой обмотки используется изолированный провод сечением не менее 2,0 мм. кв.

При намотке нужно определиться с количеством витков. Можно сделать это экспериментально – намотать на сердечник 10 витков нового провода, после чего к его концам подсоединить вольтметр и запитать трансформатор.

По показаниям вольтметра определяется, какое напряжение на выходе обеспечивают эти 10 витков.

К примеру, замеры показали, что на выходе есть 2,0 В. Значит, 12В на выходе обеспечат 60 витков, а 13 В – 65 витков. Как вы поняли, 5 витков добавляет 1 вольт.

Схема.

Ну а далее все делается, как описано выше – изготавливается диодный мост, производится соединение всех составных элементов и проверяется работоспособность.

Стоит указать, что сборку такого зарядного устройства лучше производить качественно, затем все составные части поместить в корпус, который можно изготовить из подручных материалов. Или смонтировать на основу.

Обязательно следует пометить где «плюсовой» провод, а где — «минусовой», чтобы не «переплюсовать», и не вывести из строя прибор.

ЗУ из блока питания АТХ (для подготовленных)

Более сложную схему имеет зарядное устройство, изготовленное из компьютерного блока питания.

Для изготовления устройства подойдут блоки мощностью не менее 200 Ватт моделей АТ или АТХ, которые управляются контроллером TL494 или КА7500. Важно, чтобы блок питания был полностью исправен. Не плохо себя показала модель ST-230WHF из старых ПК.

Фрагмент схемы такого зарядного устройства представлена ниже, по ней и будем работать.

Помимо блока питания также потребуется наличие потенциометра-регулятора, подстроечный резистор на 27 кОм, два резистора мощностью 5 Вт (5WR2J) и сопротивлением 0,2 Ом или один С5-16МВ.

Начальный этап работ сводится к отключению всего ненужного, которыми являются провода «-5 В», «+5 В», «-12 В» и «+12 В».

Резистор, указанный на схеме как R1 (он обеспечивает подачу напряжения +5 В на вывод 1 контроллера TL494) нужно выпаять, а на его место впаять подготовленный подстроечный резистор на 27 кОм. На верхний вывод этого резистора нужно подвести шину +12 В.

Вывод 16 контроллера следует отсоединить от общего провода, а также нужно перерезать соединения выводов 14 и 15.

В заднюю стенку корпуса блока питания нужно установить потенциометр-регулятор (на схеме – R10). Устанавливать его нужно на изоляционную пластину, чтобы он не касался корпуса блока.

Через эту стенку следует также вывести проводку для подключения к сети, а также провода для подключения АКБ.

Чтобы обеспечить удобство регулировки прибора из имеющихся двух резисторов на 5 Вт на отдельной плате нужно сделать блок резисторов, подключенных параллельно, что обеспечит на выходе 10 Вт с сопротивлением 0,1 Ом.

Далее изготовленная плата устанавливается в корпус и производится подключение всех выводов согласно схеме.

Затем следует проверить правильность соединения всех выводов и работоспособность прибора.

Финальной работой перед завершением сборки является калибровка устройства.

Для этого ручку потенциометра следует установить в среднее положение. После этого на подстроечном резисторе следует установить напряжение холостого хода на уровне 13,8-14,2 В.

Если все правильно выполнить, то при начале зарядки батареи на нее будет подаваться напряжение в 12,4 В с силой тока в 5,5 А.

По мере зарядки АКБ напряжение будет возрастать до значения, установленного на подстроечном резисторе. Как только напряжения достигнет этого значения, сила тока начнет снижаться.

Если все рабочие параметры сходятся и прибор работает нормально, остается только закрыть корпус для предотвращения повреждения внутренних элементов.

Данное устройство из блока АТХ очень удобно, поскольку при достижении полного заряда батареи, автоматически перейдет в режим стабилизации напряжения. То есть перезарядка АКБ полностью исключается.

Для удобства работ можно дополнительно прибор оснастить вольтметром и амперметром.

Итог

Это только несколько видов зарядных устройств, которые можно изготовить в домашних условиях из подручных средств, хотя вариантов их значительно больше.

Особенно это касается зарядных устройств, которые изготавливаются из блоков питания компьютера.

Если у вас есть опыт в изготовлении таких устройств делитесь им в комментариях, многие буду очень признательны за это.

Делаем самодельные зарядные устройства для автомобильных аккумуляторов

Самодельные зарядные устройства для аккумуляторов обычно имеют очень простую конструкцию, а дополнительно к тому и повышенную надежность как раз ввиду простоты схемы. Еще один плюс от изготовления зарядки своими руками – относительная дешевизна комплектующих и как результат – невысокая себестоимость прибора.

Почему сборная конструкция лучше покупного

Основная задача подобной техники – поддерживать на требуемом уровне заряд аккумуляторной батареи автомобиля в случае необходимости. Если разрядка АКБ произошла рядом с домом, где есть нужное устройство, то проблем не возникнет. В противном случае, когда нет подходящей техники для питания аккумулятор, и средств тоже недостаточно, можно собрать прибор своими руками.

Необходимость использования вспомогательных средств для подпитки АКБ автомобиля обусловлена в первую очередь низкими температурами в холодное время года, когда наполовину разряженная аккумуляторная батарея представляет собой главную, а иногда и вовсе не разрешимую проблему, если только вовремя не подзарядить АКБ. Тогда самодельные зарядные устройства для питания автомобильных аккумуляторов станут спасением для пользователей, которые не планируют вкладываться в такую технику, по крайней мере, в данный момент.

Принцип действия

До определенного уровня АКБ авто может получать питание от самого транспортного средства, а если точнее, от электрогенератора. После этого узла обычно устанавливается реле, ответственное за установку напряжения не более 14,1В. Чтобы аккумуляторная батарея зарядилась до предела, необходимо более высокое значение данного параметра – 14,4В. Соответственно, для реализации такой задачи как раз и применяются АКБ.

Основные узлы данного устройства – трансформатор и выпрямитель. В результате на выход подается постоянный ток с напряжением определенной величины (14,4В). Но почему наблюдается разбег с напряжением самой батареи – 12В? Это делается с целью обеспечения возможности зарядить АКБ, разряженной до уровня, когда значение данного параметра аккумулятора приравнивалось 12В. Если зарядка будет характеризоваться таким же по значению параметром, то в результате питание АКБ станет сложно выполнимой задачей.

Смотрим видео, самое простое устройство для заряда АКБ:

Но здесь есть нюанс: небольшое превышение уровня напряжения аккумуляторной батареи не является критичным, тогда как существенно завышенная величина этого параметра очень плохо скажется в дальнейшем на работоспособности АКБ. Принцип функционирования, которым отличается любое, даже самое простое зарядное устройство для питания автомобильного аккумулятора, заключается в повышении уровня сопротивления, что приведет к снижению зарядного тока.

Соответственно, чем больше значение напряжения (стремится к 12В), тем меньше ток. Для нормальной работы АКБ желательно устанавливать определенную величину тока заряда (порядка 10% от емкости). В спешке велик соблазн изменить значение этого параметра на большее, однако, это чревато негативными последствиями для самой аккумуляторной батареи.

Что потребуется для изготовления АКБ?

Основные элементы простой конструкции: диод и обогреватель. Если правильно (последовательно) подключить их к АКБ, можно добиться желаемого – аккумуляторная батарея будет заряжена через 10 часов. Но любителям экономить электроэнергию такое решение может не подойти, потому как расход в этом случае составит порядка 10 кВт. Работа полученного устройства характеризуется невысоким КПД.

Основные элементы простой конструкции

Но для создания подходящей модификации придется несколько видоизменить отдельные элементы, в частности, трансформатор, мощность которого должна быть на уровне 200-300 Вт. При наличии старой техники, подойдет данная деталь из обычного лампового телевизора. Для организации системы вентиляции пригодится кулер, лучше всего, если он будет от компьютера.

Когда создается простое зарядное устройство для питания аккумулятора своими руками, в качестве основных элементов выступает еще транзистор и резистор. Чтобы наладить работу конструкции, понадобится компактный снаружи, но довольно вместительный корпус из металла, хороший вариант – короб от стабилизатора.

Схема простого зарядного устройства

В теории такого рода технику сможет собрать даже начинающий радиолюбитель, который ранее не сталкивался со сложными схемами.

Схема простого устройства для заряда аккумулятора

Основная трудность заключается в необходимости видоизменить трансформатор. При таком уровне мощности обмотки характеризуются невысокими показателями напряжения (6-7В), ток будет равен 10А. Обычно же требуется напряжение 12В или 24В, в зависимости от типоисполнения аккумуляторной батареи. Чтобы получить такие значения на выходе устройства, необходимо обеспечить параллельное соединение обмоток.

Поэтапная сборка

Самодельное зарядное устройство для питания аккумулятора автомобиля начинается с подготовки сердечника. Наматывание провода на обмотки выполняется с максимальным уплотнением, важно, чтобы витки плотно прилегали друг к другу, и не оставалось просветов. Нельзя забывать и об изоляции, которая ставится с интервалом в 100 витков. Сечение провода первичной обмотки – 0,5 мм, вторичной – от 1,5 до 3,0 мм. Если учесть, что при частоте 50 Гц 4-5 витков могут обеспечить напряжение 1В, соответственно, для получения 18В требуется порядка 90 витков.

Далее, подбирается диод подходящей мощности, чтобы выдерживать подаваемые на него в будущем нагрузки. Лучший вариант – генераторный диод автомобиля. Чтобы исключить риск перегрева, необходимо обеспечить эффективную циркуляцию воздуха внутри корпуса такого прибора. Если короб не перфорирован, следует позаботиться об этом до начала сборки. Кулер необходимо подключить к выходу зарядного устройства. Основная его задача – охлаждение диода и обмотки трансформатора, что учитывается при выборе участка для установки.

Смотрим видео, подробная инструкция по изготовлению:

Схема простого зарядного устройства для питания автомобильного аккумулятора содержит еще и переменный резистор. Для нормального функционирования зарядки необходимо получить сопротивление на уровне 150 Ом и мощность 5 Вт. Более прочих соответствует этим требованиям модель резистора КУ202Н. Можно подобрать отличный от этого вариант, но его параметры должны быть сходными по значению с указанными. Задача резистора заключается в регулировке напряжения на выходе устройства. Модель транзистора КТ819 также является наилучшим вариантом из ряда аналогов.

Оценка эффективности, себестоимость

Как видно, если необходимо собрать самодельное зарядное устройство для автомобильного аккумулятора, его схема более чем проста для реализации. Единственная трудность – компоновка всех элементов и установка их в корпус с последующим соединением. Но такую работу сложно назвать трудоемкой, а стоимость всех используемых деталей крайне мала.

Некоторые из деталей, а, быть может, и все наверняка найдутся у радиолюбителя дома, например, кулер от старого компьютера, трансформатор от лампового телевизора, старый корпус от стабилизатора. Что касается степени эффективности, то подобные устройства, собранные своими руками, не отличаются очень высоким КПД, однако, в результате все же справляются со своей задачей.

Смотрим видео, полезные советы специалиста:

Таким образом, крупных вложений в создание самодельной зарядки не требуется. Наоборот, все элементы стоят крайне мало, что выгодно оттеняет данное решение в сравнении с устройством, которое можно приобрести в готовом виде. Рассмотренная выше схема не отличается высокой эффективностью, но ее главный плюс – заряженный аккумулятор авто, хоть и спустя 10 часов. Можно усовершенствовать этот вариант или рассмотреть множество других, предлагаемых для реализации.

Самодельное зарядное устройство для аккумулятора автомобиля

На фотографии представлено самодельное автоматическое зарядное устройство для зарядки автомобильных аккумуляторов на 12 В током величиной до 8 А, собранного в корпусе от милливольтметра В3-38.

Почему нужно заряжать аккумулятор автомобиля

зарядным устройством

АКБ в автомобиле заряжается с помощью электрического генератора. Для защиты электрооборудования и приборов от повышенного напряжения, которое вырабатывает автомобильным генератором, после него устанавливают реле-регулятор, который ограничивает напряжение в бортовой сети автомобиля до 14,1±0,2 В. Для полной же зарядки аккумулятора требуется напряжение не менее 14,5 В.

Таким образом, полностью зарядить АКБ от генератора невозможно и перед наступлением холодов необходимо подзаряжать аккумулятор от зарядного устройства.

Анализ схем зарядных устройств

Для зарядки автомобильного аккумулятора служат зарядные устройства. Его можно купить готовое, но при желании и небольшом радиолюбительском опыте можно сделать своими руками, сэкономив при этом немалые деньги.

Схем зарядных устройств автомобильных аккумуляторов в Интернете опубликовано много, но все они имеют недостатки.

Зарядные устройства, сделанные на транзисторах, выделяют много тепла, как правило, боятся короткого замыкания и ошибочного подключения полярности аккумулятора. Схемы на тиристорах и симисторах не обеспечивают требуемой стабильность зарядного тока и издают акустический шум, не допускают ошибок подключения аккумулятора и излучают мощные радиопомехи, которые можно уменьшить, одев на сетевой провод ферритовое кольцо.

Привлекательной выглядит схема изготовления зарядного устройства из блока питания компьютера. Структурные схемы компьютерных блоков питания одинаковые, но электрические разные, и для доработки требуется высокая радиотехническая квалификация.

Интерес у меня вызвала конденсаторная схема зарядного устройства, КПД высокий, тепла не выделяет, обеспечивает стабильный ток заряда вне зависимости от степени заряда аккумулятора и колебаний питающей сети, не боится коротких замыканий выхода. Но тоже имеет недостаток. Если в процессе заряда пропадет контакт с аккумулятором, то напряжение на конденсаторах возрастает в несколько раз, (конденсаторы и трансформатор образуют резонансный колебательный контур с частотой электросети), и они пробиваются. Надо было устранить только этот единственный недостаток, что мне и удалось сделать.

В результате получилась схема зарядного устройства без выше перечисленных недостатков. Более 16 лет заряжаю ним любые кислотные аккумуляторы на 12 В. Устройство работает безотказно.

Принципиальная схема автомобильного зарядного устройства

При кажущейся сложности, схема самодельного зарядного устройства простая и состоит всего из нескольких законченных функциональных узлов.

Если схема для повторения Вам показалась сложной, то можно собрать более простую, работающую на таком же принципе, но без функции автоматического отключения при полной зарядке аккумулятора.

Схема ограничителя тока на балластных конденсаторах

В конденсаторном автомобильном зарядном устройстве регулировка величины и стабилизация силы тока заряда аккумулятора обеспечивается за счет включения последовательно с первичной обмоткой силового трансформатора Т1 балластных конденсаторов С4-С9. Чем больше емкость конденсатора, тем больше будет ток заряда аккумулятора.

Практически это законченный вариант зарядного устройства, можно подключить после диодного моста аккумулятор и зарядить его, но надежность такой схемы низкая. Если нарушится контакт с клеммами аккумулятора, то конденсаторы могут выйти из строя.

Емкость конденсаторов, которая зависит от величины тока и напряжения на вторичной обмотке трансформатора, можно приблизительно определить по формуле, но легче ориентироваться по данным таблицы.

Для регулировки тока, чтобы сократить количество конденсаторов, их можно подключать параллельно группами. У меня переключение осуществляется с помощью двух галетного переключателя, но можно поставить несколько тумблеров.

Схема защиты

от ошибочного подключения полюсов аккумулятора

Схема защиты от переполюсовки зарядного устройства при неправильном подключении аккумулятора к выводам выполнена на реле Р3. Если аккумулятор подключен неправильно, диод VD13 не пропускает ток, реле обесточено, контакты реле К3.1 разомкнуты и ток не поступает на клеммы аккумулятора. При правильном подключении реле срабатывает, контакты К3.1 замыкаются, и аккумулятор подключается к схеме зарядки. Такую схему защиты от переполюсовки можно использовать с любым зарядным устройством, как транзисторным, так и тиристорным. Ее достаточно включить в разрыв проводов, с помощью которых аккумулятор подключается к зарядному устройству.

Схема измерения тока и напряжения зарядки аккумулятора

Благодаря наличию переключателя S3 на схеме выше, при зарядке аккумулятора есть возможность контролировать не только величину тока зарядки, но и напряжение. При верхнем положении S3, измеряется ток, при нижнем – напряжение. Если зарядное устройство не подключено к электросети, то вольтметр покажет напряжение аккумулятора, а когда идет зарядка аккумулятора, то напряжение зарядки. В качестве головки применен микроамперметр М24 с электромагнитной системой. R17 шунтирует головку в режиме измерения тока, а R18 служит делителем при измерении напряжения.

Схема автоматического отключения ЗУ

при полной зарядке аккумулятора

Для питания операционного усилителя и создания опорного напряжения применена микросхема стабилизатора DA1 типа 142ЕН8Г на 9В. Микросхема это выбрана не случайно. При изменении температуры корпуса микросхемы на 10º, выходное напряжение изменяется не более чем на сотые доли вольта.

Система автоматического отключения зарядки при достижении напряжения 15,6 В выполнена на половинке микросхемы А1.1. Вывод 4 микросхемы подключен к делителю напряжения R7, R8 с которого на него подается опорное напряжение 4,5 В. Вывод 4 микросхемы подключен к другому делителю на резисторах R4-R6, резистор R5 подстроечный для установки порога срабатывания автомата. Величиной резистора R9 задается порог включения зарядного устройства 12,54 В. Благодаря применению диода VD7 и резистора R9, обеспечивается необходимый гистерезис между напряжением включения и отключения заряда аккумулятора.

Работает схема следующим образом. При подключении к зарядному устройству автомобильного аккумулятора, напряжение на клеммах которого меньше 16,5 В, на выводе 2 микросхемы А1.1 устанавливается напряжение достаточное для открывания транзистора VT1, транзистор открывается и реле P1 срабатывает, подключая контактами К1.1 к электросети через блок конденсаторов первичную обмотку трансформатора и начинается зарядка аккумулятора.

Как только напряжение заряда достигнет 16,5 В, напряжение на выходе А1.1 уменьшится до величины, недостаточной для поддержания транзистора VT1 в открытом состоянии. Реле отключится и контакты К1.1 подключат трансформатор через конденсатор дежурного режима С4, при котором ток заряда будет равен 0,5 А. В таком состоянии схема зарядного устройства будет находиться, пока напряжение на аккумуляторе не уменьшится до 12,54 В. Как только напряжение установится равным 12,54 В, опять включится реле и зарядка пойдет заданным током. Предусмотрена возможность, в случае необходимости, переключателем S2 отключить систему автоматического регулирования.

Таким образом, система автоматического слежения за зарядкой аккумулятора, исключит возможность перезаряда аккумулятора. Аккумулятор можно оставить подключенным к включенному зарядному устройству хоть на целый год. Такой режим актуален для автолюбителей, которые ездят только в летнее время. После окончания сезона автопробега можно подключить аккумулятор к зарядному устройству и выключить только весной. Даже если в электросети пропадет напряжение, при его появлении зарядное устройство продолжит заряжать аккумулятор в штатном режиме

Принцип работы схемы автоматического отключения зарядного устройства в случае превышения напряжения из-за отсутствия нагрузки, собранной на второй половинке операционного усилителя А1.2, такой же. Только порог полного отключения зарядного устройства от питающей сети выбран 19 В. Если напряжение зарядки менее 19 В, на выходе 8 микросхемы А1.2 напряжение достаточное, для удержания транзистора VT2 в открытом состоянии, при котором на реле P2 подано напряжение. Как только напряжение зарядки превысит 19 В, транзистор закроется, реле отпустит контакты К2.1 и подача напряжения на зарядное устройство полностью прекратится. Как только будет подключен аккумулятор, он запитает схему автоматики, и зарядное устройство сразу вернется в рабочее состояние.

Конструкция автоматического зарядного устройства

Все детали зарядного устройства размещены в корпусе миллиамперметра В3-38, из которого удалено все его содержимое, кроме стрелочного прибора. Монтаж элементов, кроме схемы автоматики, выполнен навесным способом.

Конструкция корпуса миллиамперметра, представляет собой две прямоугольные рамки, соединенные четырьмя уголками. В уголках с равным шагом сделаны отверстия, к которым удобно крепить детали.

Силовой трансформатор ТН61-220 закреплен на четырех винтах М4 на алюминиевой пластине толщиной 2 мм, пластина в свою очередь прикреплена винтами М3 к нижним уголкам корпуса. На этой пластине установлен и С1. На фото вид зарядного устройства снизу.

К верхним уголкам корпуса закреплена тоже пластина из стеклотекстолита толщиной 2 мм, а к ней винтами конденсаторы С4-С9 и реле Р1 и Р2. К этим уголкам также прикручена печатная плата, на которой спаяна схема автоматического управления зарядкой аккумулятора. Реально количество конденсаторов не шесть, как по схеме, а 14, так как для получения конденсатора нужного номинала приходилось соединять их параллельно. Конденсаторы и реле подключены к остальной схеме зарядного устройства через разъем (на фото выше голубой), что облегчило доступ к другим элементам при монтаже.

На внешней стороне задней стенки установлен ребристый алюминиевый радиатор для охлаждения силовых диодов VD2-VD5. Тут также установлен предохранитель Пр1 на 1 А и вилка, (взята от блока питания компьютера) для подачи питающего напряжения.

Силовые диоды зарядного устройства закреплены с помощью двух прижимных планок к радиатору внутри корпуса. Для этого в задней стенке корпуса сделано прямоугольное отверстие. Такое техническое решение позволило к минимуму свести количество выделяемого тепла внутри корпуса и экономии места. Выводы диодов и подводящие провода распаяны на незакрепленную планку из фольгированного стеклотекстолита.

На фотографии вид самодельного зарядного устройства с правой стороны. Монтаж электрической схемы выполнен цветными проводами, переменного напряжения – коричневым, плюсовые – красным, минусовые – проводами синего цвета. Сечение проводов, идущих от вторичной обмотки трансформатора к клеммам для подключения аккумулятора должно быть не менее 1 мм2.

Шунт амперметра представляет собой отрезок высокоомного провода константана длиной около сантиметра, концы которого запаяны в медные полоски. Длина провода шунта подбирается при калибровке амперметра. Провод я взял от шунта сгоревшего стрелочного тестера. Один конец из медных полосок припаян непосредственно к выходной клемме плюса, ко второй полоске припаян толстый проводник, идущий от контактов реле Р3. На стрелочный прибор от шунта идут желтый и красный провод.

Печатная плата блока автоматики зарядного устройства

Схема автоматического регулирования и защиты от неправильного подключения аккумулятора к зарядному устройству спаяна на печатной плате из фольгированного стеклотекстолита.

На фотографии представлен внешний вид собранной схемы. Рисунок печатной платы схемы автоматического регулирования и защиты простой, отверстия выполнены с шагом 2,5 мм.

На фотографии выше вид печатной платы со стороны установки деталей с нанесенной красным цветом маркировкой деталей. Такой чертеж удобен при сборке печатной платы.

Чертеж печатной платы выше пригодится при ее изготовлении с помощью технологии с применением лазерного принтера.

А этот чертеж печатной платы пригодится при нанесении токоведущих дорожек печатной платы ручным способом.

Шкала вольтметра и амперметра зарядного устройства

Шкала стрелочного прибора милливольтметра В3-38 не подходила под требуемые измерения, пришлось начертить на компьютере свой вариант, напечатал на плотной белой бумаге и клеем момент приклеил сверху на штатную шкалу.

Благодаря большему размеру шкалы и калибровки прибора в зоне измерения, точность отсчета напряжения получилась 0,2 В.

Провода для подключения АЗУ к клеммам аккумулятора и сети

На провода для подключения автомобильного аккумулятора к зарядному устройству с одной стороны установлены зажимы типа крокодил, с другой стороны разрезные наконечники. Для подключения плюсового вывода аккумулятора выбран красный провод, для подключения минусового – синий. Сечение проводов для подключения к устройству аккумулятора должно быть не менее 1 мм2.

К электрической сети зарядное устройство подключается с помощью универсального шнура с вилкой и розеткой, как применяется для подключения компьютеров, оргтехники и других электроприборов.

О деталях зарядного устройства

Силовой трансформатор Т1 применен типа ТН61-220, вторичные обмотки которого соединены последовательно, как показано на схеме. Так как КПД зарядного устройства не менее 0,8 и ток заряда обычно не превышает 6 А, то подойдет любой трансформатор мощностью 150 ватт. Вторичная обмотка трансформатора должна обеспечить напряжение 18-20 В при токе нагрузки до 8 А. Если нет готового трансформатора, то можно взять любой подходящий по мощности и перемотать вторичную обмотку. Рассчитать число витков вторичной обмотки трансформатора можно с помощью специального калькулятора.

Конденсаторы С4-С9 типа МБГЧ на напряжение не менее 350 В. Можно использовать конденсаторы любого типа, рассчитанные на работу в цепях переменного тока.

Диоды VD2-VD5 подойдут любого типа, рассчитанные на ток 10 А. VD7, VD11 — любые импульсные кремневые. VD6, VD8, VD10, VD5, VD12 и VD13 любые, выдерживающие ток 1 А. Светодиод VD1 – любой, VD9 я применил типа КИПД29. Отличительная особенность этого светодиода, что он меняет цвет свечения при смене полярности подключения. Для его переключения использованы контакты К1.2 реле Р1. Когда идет зарядка основным током светодиод светит желтым светом, а при переключении в режим подзарядки аккумулятора – зеленым. Вместо бинарного светодиода можно установить любых два одноцветных, подключив их по ниже приведенной схеме.

В качестве операционного усилителя выбран КР1005УД1, аналог зарубежного AN6551. Такие усилители применяли в блоке звука и видео в видеомагнитофоне ВМ-12. Усилитель хорош тем, что не требует двухполярного питания, цепей коррекции и сохраняет работоспособность при питающем напряжении от 5 до 12 В. Заменить его можно практически любым аналогичным. Хорошо подойдут для замены микросхемы, например, LM358, LM258, LM158, но нумерация выводов у них другая, и потребуется внести изменения в рисунок печатной платы.

Реле Р1 и Р2 любые на напряжение 9-12 В и контактами, рассчитанными на коммутируемый ток 1 А. Р3 на напряжение 9-12 В и ток коммутации 10 А, например РП-21-003. Если в реле несколько контактных групп, то их желательно запаять параллельно.

Переключатель S1 любого типа, рассчитанный на работу при напряжении 250 В и имеющий достаточное количество коммутирующих контактов. Если не нужен шаг регулирования тока в 1 А, то можно поставить несколько тумблеров и устанавливать ток заряда, допустим, 5 А и 8 А. Если заряжать только автомобильные аккумуляторы, то такое решение вполне оправдано. Переключатель S2 служит для отключения системы контроля уровня зарядки. В случае заряда аккумулятора большим током, возможно срабатывание системы раньше, чем аккумулятор зарядится полностью. В таком случае можно систему отключить и продолжить зарядку в ручном режиме.

Электромагнитная головка для измерителя тока и напряжения подойдет любая, с током полного отклонения 100 мкА, например типа М24. Если нет необходимости измерять напряжение, а только ток, то можно установить готовый амперметр, рассчитанный на максимальный постоянный ток измерения 10 А, а напряжение контролировать внешним стрелочным тестером или мультиметром, подключив их к контактам аккумулятора.

Настройка блока автоматической регулировки и защиты АЗУ

При безошибочной сборке платы и исправности всех радиоэлементов, схема заработает сразу. Останется только установить порог напряжения резистором R5, при достижении которого зарядка аккумулятора будет переведена в режим зарядки малым током.

Регулировку можно выполнить непосредственно при зарядке аккумулятора. Но все, же лучше подстраховаться и перед установкой в корпус, схему автоматического регулирования и защиты АЗУ проверить и настроить. Для этого понадобится блок питания постоянного тока, у которого есть возможность регулировать выходное напряжение в пределах от 10 до 20 В, рассчитанного на выходной ток величиной 0,5-1 А. Из измерительных приборов понадобится любой вольтметр, стрелочный тестер или мультиметр рассчитанный на измерение постоянного напряжения, с пределом измерения от 0 до 20 В.

Проверка стабилизатора напряжения

После монтажа всех деталей на печатную плату нужно подать от блока питания питающее напряжение величиной 12-15 В на общий провод (минус) и вывод 17 микросхемы DA1 (плюс). Изменяя напряжение на выходе блока питания от 12 до 20 В, нужно с помощью вольтметра убедиться, что величина напряжения на выходе 2 микросхемы стабилизатора напряжения DA1 равна 9 В. Если напряжение отличается или изменяется, то DA1 неисправна.

Микросхемы серии К142ЕН и аналоги имеют защиту от короткого замыкания по выходу и если закоротить ее выход на общий провод, то микросхема войдет в режим защиты и из строя не выйдет. Если проверка показала, что напряжение на выходе микросхемы равно 0, то это не всегда означает о ее неисправности. Вполне возможно наличие КЗ между дорожками печатной платы или неисправен один из радиоэлементов остальной части схемы. Для проверки микросхемы достаточно отсоединить от платы ее вывод 2 и если на нем появится 9 В, значит, микросхема исправна, и необходимо найти и устранить КЗ.

Проверка системы защиты от перенапряжения

Описание принципа работы схемы решил начать с более простой части схемы, к которой не предъявляются строгие нормы по напряжению срабатывания.

Функцию отключения АЗУ от электросети в случае отсоединения аккумулятора выполняет часть схемы, собранная на операционном дифференциальном усилителе А1.2 (далее ОУ).

Принцип работы операционного дифференциального усилителя

Без знания принципа работы ОУ разобраться в работе схемы сложно, поэтому приведу краткое описание. ОУ имеет два входа и один выход. Один из входов, который обозначается на схеме знаком «+», называется неинвертирующим, а второй вход, который обозначается знаком «–» или кружком, называется инвертирующим. Слово дифференциальный ОУ означает, что напряжение на выходе усилителя зависит от разности напряжений на его входах. В данной схеме операционный усилитель включен без обратной связи, в режиме компаратора – сравнения входных напряжений.

Таким образом, если напряжение на одном из входов будет неизменным, а на втором изменятся, то в момент перехода через точку равенства напряжений на входах, напряжение на выходе усилителя скачкообразно изменится.

Проверка схемы защиты от перенапряжения

Вернемся к схеме. Неинвертирующий вход усилителя А1.2 (вывод 6) подключен к делителю напряжения, собранного на резисторах R13 и R14. Этот делитель подключен к стабилизированному напряжению 9 В и поэтому напряжение в точке соединения резисторов, никогда не изменяется и составляет 6,75 В. Второй вход ОУ (вывод 7) подключен ко второму делителю напряжения, собранному на резисторах R11 и R12. Этот делитель напряжения подключен к шине, по которой идет зарядный ток, и напряжение на нем меняется в зависимости от величины тока и степени заряда аккумулятора. Поэтому и величина напряжения на выводе 7 тоже будет, соответственно изменятся. Сопротивления делителя подобраны таким образом, что при изменении напряжения зарядки аккумулятора от 9 до 19 В напряжение на выводе 7 будет меньше, чем на выводе 6 и напряжение на выходе ОУ (вывод 8) будет больше 0,8 В и близко к напряжению питания ОУ. Транзистор будет открыт, на обмотку реле Р2 будет поступать напряжение и оно замкнет контакты К2.1. Напряжение на выходе также закроет диод VD11 и резистор R15 в работе схемы участвовать не будет.

Как только напряжение зарядки превысит 19 В (это может случится только в случае, если от выхода АЗУ будет отключен аккумулятор), напряжение на выводе 7 станет больше, чем на выводе 6. В этом случае на выходе ОУ напряжение скачкообразно уменьшится до нуля. Транзистор закроется, реле обесточится и контакты К2.1 разомкнутся. Подача питающего напряжения на ОЗУ будет прекращена. В момент, когда напряжение на выходе ОУ станет равно нулю, откроется диод VD11 и, таким образом, параллельно к R14 делителя подключится R15. Напряжение на 6 выводе мгновенно уменьшится, что исключит ложные срабатывания в момент равенства напряжений на входах ОУ из-за пульсаций и помех. Изменяя величину R15 можно менять гистерезис компаратора, то есть напряжение, при котором схема вернется в исходное состояние.

При подключения аккумулятора к ОЗУ напряжения на выводе 6 опять установится равным 6,75 В, а на выводе 7 будет меньше и схема начнет работать в штатном режиме.

Для проверки работы схемы достаточно изменять напряжение на блоке питания от 12 до 20 В и подключив вольтметр вместо реле Р2 наблюдать его показания. При напряжении меньше 19 В, вольтметр должен показывать напряжение, величиной 17-18 В (часть напряжения упадет на транзисторе), а при большем – ноль. Желательно все же подключить к схеме обмотку реле, тогда будет проверена не только работа схемы, но и его работоспособность, а по щелчкам реле можно будет контролировать работу автоматики без вольтметра.

Если схема не работает, то нужно проверить напряжения на входах 6 и 7, выходе ОУ. При отличии напряжений от указанных выше, нужно проверить номиналы резисторов соответствующих делителей. Если резисторы делителей и диод VD11 исправны, то, следовательно, неисправен ОУ.

Для проверки цепи R15, D11 достаточно отключить одни из выводов этих элементов, схема будет работать, только без гистерезиса, то есть включаться и отключаться при одном и том же подаваемом с блока питания напряжении. Транзистор VT12 легко проверить, отсоединив один из выводов R16 и контролируя напряжение на выходе ОУ. Если на выходе ОУ напряжение изменяется правильно, а реле все время включено, значит, имеет место пробой между коллектором и эмиттером транзистора.

Проверка схемы отключения аккумулятора при полной его зарядке

Принцип работы ОУ А1.1 ничем не отличается от работы А1.2, за исключением возможности изменять порог отключения напряжения с помощью подстроечного резистора R5.

Делитель для опорного напряжения собран на резисторах R7, R8 и напряжение на выводе 4 ОУ должно быть 4,5 В. Напряжение на выводе 3 А1.1, как Вы уже поняли, должно быть равно напряжению 4,5 в случае, когда напряжение на аккумуляторе достигнет величины 15,6 В для случая тока зарядки 0,3 А. Для больших токов, напряжение будет большим и его нужно подбирать экспериментально. Более подробно этот вопрос рассмотрен в статье сайта «Как заряжать аккумулятор».

Для проверки работы А1.1, питающее напряжение, поданное с блока питания плавно увеличивается и уменьшается в пределах 12-18 В. При достижении напряжения 15,6 В должно отключиться реле Р1 и контактами К1.1 переключить АЗУ в режим зарядки малым током через конденсатор С4. При снижении уровня напряжения ниже 12,54 В реле должно включится и переключить АЗУ в режим зарядки током заданной величины.

Напряжение порога включения 12,54 В можно регулировать изменением номинала резистора R9, но в этом нет необходимости.

С помощью переключателя S2 имеется возможность отключать автоматический режим работы, включив реле Р1 напрямую.

Схема зарядного устройства на конденсаторах

без автоматического отключения

Для тех, кто не имеет достаточного опыта по сборке электронных схем или не нуждается в автоматическом отключении ЗУ по окончании зарядки аккумулятора, предлагаю упрощенней вариант схемы устройства для зарядки кислотных автомобильных аккумуляторов. Отличительная особенность схемы в ее простоте для повторения, надежности, высоком КПД и стабильным током заряда, наличие защиты от неправильного подключения аккумулятора, автоматическое продолжение зарядки в случае пропадания питающего напряжения.

Принцип стабилизации зарядного тока остался неизменным и обеспечивается включением последовательно с сетевым трансформатором блока конденсаторов С1-С6. Для защиты от перенапряжения на входной обмотке и конденсаторах используется одна из пар нормально разомкнутых контактов реле Р1.

Когда аккумулятор не подключен, контакты реле Р1 К1.1 и К1.2 разомкнуты и даже если зарядное устройство подключено к питающей сети ток не поступает на схему. Тоже самое происходит, если подключить ошибочно аккумулятор по полярности. При правильном подключении аккумулятора ток с него поступает через диод VD8 на обмотку реле Р1, реле срабатывает и замыкаются его контакты К1.1 и К1.2. Через замкнутые контакты К1.1 сетевое напряжение поступает на зарядное устройство, а через К1.2 на аккумулятор поступает зарядный ток.

На первый взгляд кажется, что контакты реле К1.2 не нужны, но если их не будет, то при ошибочном подключении аккумулятора, ток потечет с плюсового вывода аккумулятора через минусовую клемму ЗУ, далее через диодный мост и далее непосредственно на минусовой вывод аккумулятора и диоды моста ЗУ выйдут из строя.

Предложенная простая схема для зарядки аккумуляторов легко адаптируется для зарядки аккумуляторов на напряжение 6 В или 24 В. Достаточно заменить реле Р1 на соответствующее напряжение. Для зарядки 24 вольтовых аккумуляторов необходимо обеспечить выходное напряжение с вторичной обмотки трансформатора Т1 не менее 36 В.

При желании схему простого зарядного устройства можно дополнить прибором индикации зарядного тока и напряжения, включив его как в схеме автоматического зарядного устройства.

Порядок зарядки автомобильного аккумулятора

автоматическим самодельным ЗУ

Перед зарядкой снятый с автомобиля аккумулятор необходимо очистить от грязи и протереть его поверхности, для удаления кислотных остатков, водным раствором соды. Если кислота на поверхности есть, то водный раствор соды пенится.

Если аккумулятор имеет пробки для заливки кислоты, то все пробки нужно выкрутить, для того, чтобы образующиеся при зарядке в аккумуляторе газы могли свободно выходить. Обязательно нужно проверить уровень электролита, и если он меньше требуемого, долить дистиллированной воды.

Далее нужно переключателем S1 на зарядном устройстве выставить величину тока заряда и подключить аккумулятор соблюдая полярность (плюсовой вывод аккумулятора нужно подсоединить к плюсовому выводу зарядного устройства) к его клеммам. Если переключатель S3 находится в нижнем положении, то стрелка прибора на зарядном устройстве сразу покажет напряжение, которое выдает аккумулятор. Осталось вставить вилку сетевого шнура в розетку и процесс зарядки аккумулятора начнется. Вольтметр уже начнет показывать напряжение зарядки.

Рассчитать время заряда аккумулятора с помощью онлайн калькулятора, выбрать оптимальный режим зарядки автомобильного аккумулятора и ознакомиться с правилами его эксплуатации Вы можете посетив статью сайта «Как заряжать аккумулятор».

Евгений 17.03.2016

Здравствуйте!

Хотелось бы узнать, работоспособны ли варианты схем на базе Вашей упрощенной схемы, представленные на рисунке. Хотелось бы обойтись тем, что имеется под рукой, минимумом деталей, ввиду срочности сборки. И какое реле можно применить?

Резистор параллельно конденсаторам приткнул — боюсь что при отключении они могут сохранять заряд и «кусаться» от вилки?

Заранее благодарен за ответ.

Александр

Здравствуйте, Евгений!

Верхняя схема на рисунке будет работать нормально. Реле можно брать любое на 12 В, и током нагрузки на контакты 10 А, хорошо подойдет реле, применяемые в автомобилях.

Резистор можно поставить, чтоб вилка не «кусалась».

Нижняя схема тоже будет работать, но ток зарядки будет гулять в больших пределах, и уменьшаться по мере зарядки аккумулятора. В этой схеме контакты К1.1 лишние. Провод от предохранителя проходит напрямую к латру.

Алекс 09.01.2017

Доброго времени суток Александр Николаевич.

От всей души поздравляю вас и вашу семью с наступившим Новым годом и Рождеством!

Случайно наткнулся на ваш сайт, когда искал схему зарядного устройства. Схема порадовала отсутствием электролитов (только в фильтре питания). Но у меня возникли вопросы …

Пока задам один, по регулятору тока в первичной обмотке. Вы применили МБГЧ и написали, что можно применять любые.

Можно ли использовать К73-15 или К73-17? Не взорвутся ли? ))) Либо их китайские аналоги CBB Металлизировало пленочные конденсаторы 4,7 µF 475j 630 V показанные на снимке?

Спасибо за ответ.

Александр

Здравствуйте, Алекс!

Вас тоже поздравляю с наступившим Новым годом и Рождеством!

Конденсатор С1 в фильтре можно и не ставить, он просто способствует более быстрому заряду аккумулятора при том же токе заряда, так как сглаживает пульсации.

Использовать К73-15 или К73-17 и любые другие можно, главное, чтобы они были рассчитаны на напряжение не менее 400 В. Китайские конденсаторы тоже подойдут.

Алексей 24.01.2018

Здравствуйте, Александр.

На фотографии ЗУ помещено в корпус блока питания, однако все надписи на лицевой панели соответствуют именно ЗУ. Значит Вы их делали сами. А каким образом это получилось?

Известный лазерно-утюжный способ что-то не очень эффективен…

Александр

Здравствуйте, Алексей!

Нарисовал в программе Визио картинку, напечатал на лазерном принтере на цветной плотной бумаге и поместил под оргстекло толщиной 1 мм и закрепил по углам четырьмя винтами.

Алексей 08.01.2021

Добрый день, подскажите, почему отключение настроено на 15,6 вольта, т.е 2,6 вольта на каждую банку. Это не многовато?

Александр

Здравствуйте, Алексей!

Напряжение на клеммах полностью заряженного аккумулятора через нескольких часов после окончания зарядки должно составлять 12,65 В. Но для того, чтобы при зарядке через аккумулятор пошел ток зарядки напряжение должно быть выше указанного, и чем больше нужен ток, тем больше должно быть напряжение зарядки. Это вытекает из Закона Ома: U=I×R.

Но внутреннее сопротивление аккумулятора зависит от его технического состояния, типа, температуры. Поэтому, если нужна высокая точность, напряжение отключения нужно подбирать под конкретный аккумулятор.
Указанное напряжение 15,6 В подобрано экспериментально при зарядке нескольких аккумуляторов током 8 А. Многократная зарядка автомобильных аккумуляторов в течение более десяти лет, находившихся в разном техническом состоянии и степени заряда, подтвердила правильность выбора.

В случае величины тока зарядки меньше, напряжение отключения тоже должно быть меньше.

Сергей 31.03.2021

День добрый!

Имеется два трансформатора от одинаковых ИБП PCM SMK-600A (по 360 Вт) с напряжениями на вторичной обмотке по 12,6 В. Имеет право на жизнь ЗУ по такой схеме?

Александр

Здравствуйте, Сергей!

Да, схема будет нормально работать, но заряжать током до 2 А. Указанная в маркировке мощность ИБП относится к отдаваемой мощности в режиме источника бесперебойного питания. Расчеты показали, для зарядки штатного аккумулятора ИБП емкостью 14,2 А·Ч нужен ток около 2 А.

Автоматическое зарядное устройство на 6 А своими руками

Всем любителям самодельных девайсов привет. Хотел бы представить на ваш суд зарядное устройство, которое недавно сделал для своей старенькой BMW (точнее для её аккумулятора 60 А).

Схема автоматического зарядного устройства на 6 А

Плата, спроектированная в первоисточнике, была слишком сложной, поэтому разработал свою, более простую.

Вот некоторые данные по деталям, которые могут быть полезны при повторении ЗУ:

  1. Трансформатор 150VA 220 / 18 В
  2. Мост диодный 25 A на 1000 В
  3. Резисторы: R1 0,69 Ом 50 Вт; R1 2,2 Ом 50 Вт
  4. Предохранители: 220 В, 5А; на выходе для защиты аккумуляторной батареи 10 А.

Тиристор BT-151 на радиаторе прикрученном к корпусу, нагревается слабо — до 40 градусов. Мостовой выпрямитель нагревается сильнее. Резистор R1 (собран из двух) такой горячий, что можно сделать из него радиатор на зиму. Тут использовал 50 Вт, потому что 10 Вт были совсем уж горячими. Корпус, к которому привинчены эти резисторы, локально не нагревается более чем до 70 градусов при длительном максимальном токе в 6 А.

Первый переключатель слева включает источник питания — трансформатор, второй — резистор R1 и третий переключатель другой R1 (резисторы R1 могут работать параллельно).

Провода сильноточных цепей имеют поперечное сечение 2,5 мм2, за исключением проводов, идущих к батарее, которые длинной 3 м и имеют поперечное сечение 4 мм2.

Первоначально трансформатор питал галогенное освещение 11,5 В, домотал катушку и все было закреплено лентой, пропитанной эпоксидной смолой. Корпус зарядки от поврежденного дешманского выпрямителя из Китая.

Все поверхности, через которые проходят тепловые потоки, смазаны силиконовой термопастой. Блок должен работать снаружи и в гараже, поэтому попытался по максимуму защитить от влаги, покрасив плату электроизоляционным лаком и используя термоусадочные трубки.

Зарядное устройство прекрасно заряжает, оно на самом деле работает до 14,4 В, а затем снова включается при 13,2 В (так его отрегулировал). Стоимость сборки может быть вообще околонулевой, если имеются основные детали (тиристор и трансформатор).

 

Размер составляет около 95 x 47 мм, прежде всего дал пол ватта всем резисторам. BC177 сменил на BC307. Кроме того, подготовил место и колодки с отверстиями для двух силовых резисторов (R1), первое даже для разных размеров этого резистора (несколько отверстий на выбор). Неизвестно, подходят ли винтовые разъемы для такого уровня токовой нагрузки, но есть смысл снабдить плату разъемами, чтобы не было необходимости паять провода непосредственно к печатной плате. Пусть это будет модуль который легко собирать и разбирать.

Более сложный вариант зарядного устройства для автомобильных 50-60 А аккумуляторов смотрите тут.

Схема и корпус самодельного Power Bank

Power Bank — это портативное, зарядное устройство, которое просто необходимо при путешествиях, да и вообще для быстрой подзарядки практически любого мобильного устройства.

На фото выше представлен готовый, работающий вариант устройства, собранного своими руками. Для начала стоит определиться с корпусом устройства, так как от этого зависит начинка девайса.

Вместимость корпуса (объем) дает возможность увеличить количество аккумуляторов устройста, а следовательно и емкость.

Включается Power Bank тумблером и при включении загорается зеленый светодиод. После включения на usb разъеме появляется напряжение 5 вольт (u = 5 В).

При зарядке загорается красный индикатор возле микро-usb, при полностью заряженных аккумуляторах загорается зеленый индикатор.

Характеристики Power Bank

  • Выходная емкость (при токе разрядки 1 А) ~2500 мА/ч
  • Максимальный выходной ток: 1.5А
  • Емкость встроенных аккумуляторов ~4500 мА/ч
  • Максимальный ток зарядки встроенных аккумуляторов: 2 А.

Принцип действия и детали

Сборка производилась по схеме на рисунке:

Схема сборки самодельного Power Bank

В конструкции использовал три АКБ с емкость ~ 1500 мА/ч каждый. (АКБ соединены параллельно).

Контроллер зарядки состоит из двух параллельных плат ( для увеличения тока до 2А.)

Вся электроника собрана на стеклотекстолите.

Основные модули покупал на Алиэкспресс:

Сборка производилась поэтапно. Необходимо при расчете места для деталей учесть: преобразователь может сильно нагреваться, потому стоит конструировать дальше от других деталей. Отверстия в корпусе делал с помощью мини дрели.

Преобразователь настраивается на u=5 B при подаче на него напряжения и регулировкой подстроечного резистора.

При подключении батареи к электроники необходимо использовать провода большого сечения.

Таким образом, получился отличный, проверенный на практике Power Bank, а вариант ещё более мощного аналогичного устройства смотрите в другой статье. Автор проекта — Сергей Голубкин.

Как своими руками сделать солнечное зарядное устройство для телефона

Создание своими руками солнечной USB зарядки для телефона — один из самых интересных и полезных проектов на ВЕЛОФАНЕ. Сделать самодельное зарядное устройство не слишком сложно — необходимые компоненты не очень дорогие и их легко достать. Солнечные зарядные USB устройства идеально подходят для зарядки небольших устройств, например, телефона.

Слабым местом всех самодельных солнечных зарядок являются аккумуляторы. Большинство зарядных устройств на солнечных батареях собираются на базе стандартных никель-металл-гидридных аккумуляторов — дешёвых, доступных и безопасных в эксплуатации. Но к сожалению у NiMH аккумуляторов слишком низкие напряжение и ёмкость, чтобы их можно было серьёзно рассматривать в качестве зарядных устройств для современных гаджетов, энергопотребление которых с каждым годом только растёт.

Например, аккумулятор iPhone 4 на 2000 мА*ч ещё можно полностью перезарядить от самодельной солнечной зарядки с двумя или четырьмя аккумуляторами АА, но вот iPad 2 оснащён аккумулятором на 6000 мА*ч, который уже не так просто перезарядить с помощью подобного зарядного устройства.

Решением данной проблемы является замена никель-металл-гидридных аккумуляторов на литиевые.

Из этой инструкции вы узнаете, как своими руками сделать солнечную USB зарядку с литиевым аккумулятором. Во-первых, по сравнению с коммерческими зарядными устройствами это самодельное зарядное устройство обойдётся вам очень дёшево. Во-вторых, собрать его очень просто. И самое главное — эта литиевая USB зарядка безопасна при эксплуатации.

Шаг 1: Необходимые компоненты для сборки солнечной USB зарядки.

Электронные компоненты:

  • Солнечная батарея на 5 В или выше
  • Литий-ионный аккумулятор на 3,7 В
  • Контроллер зарядки литий-ионного аккумулятора
  • Повышающая USB схема постоянного тока
  • Разъём 2,5 мм с креплением на панель
  • Разъём 2,5 мм с проводом
  • Диод 1N4001
  • Провод

Конструкционные материалы:

  • Изолента
  • Термоусадочные трубки
  • Двухсторонняя лента из пеноматериала
  • Припой
  • Жестяная коробка (или другой корпус)

Инструменты:

  • Паяльник
  • Пистолет для склеивания горячим клеем
  • Дрель
  • Дремель (не обязателен, но желателен)
  • Кусачки
  • Инструмент для зачистки проводов
  • Помощь друга
  • Защитные очки

В этом руководстве рассказывается как сделать зарядное устройство для телефона на солнечной энергии. Вы можете отказаться от использования солнечных батарей и ограничиться только изготовлением обычной USB зарядки на литий-ионных аккумуляторах.

Большинство компонентов для этого проекта можно купить в интернет магазинах электроники, но повышающую USB схему постоянного тока и контроллер заряда литий-ионного аккумулятора найти будет не так просто. Далее в этом руководстве я расскажу, где можно достать большинство необходимых компонентов и для чего каждый из них нужен. Исходя из этого вы сами решите какой вариант вам лучше всего подходит.

Шаг 2: Преимущества зарядных устройств с литиевыми аккумуляторами.

Может быть вы не догадываетесь, но скорей всего литий-ионный аккумулятор прямо сейчас лежит у вас в кармане или на столе, а может и в вашем кошельке или рюкзаке. В большинстве современных электронных устройств используются литий-ионные аккумуляторы, характеризующиеся большой ёмкостью и напряжением. Их можно перезаряжать множество раз. Большинство аккумуляторов формата АА по химическому составу являются никель-металл-гидридными и не могут похвастаться высокими техническими характеристиками.

С химической точки зрения разница между стандартным никель-металл-гидридным аккумулятором АА и литий-ионным аккумулятором заключается в химических элементах, содержащихся внутри элемента питания. Если вы посмотрите на периодическую таблицу элементов Менделеева, то увидите, что литий находится в левом углу рядом с самыми химически активными элементами. А вот никель расположен в середине таблицы рядом с химически неактивными элементами. Литий обладает такой высокой химической активностью из-за того, что у него только один валентный электрон.

И как раз именно по этой причине на литий много нареканий — иногда он может выходить из-под контроля из-за своей высокой химической активности. Несколько лет назад компания Sony, лидер в производстве аккумуляторов для ноутбуков, изготовила партию некачественных аккумуляторов для ноутбуков, некоторые из которых самопроизвольно возгорались.

Именно поэтому при работе с литий-ионными аккумуляторами мы должны придерживаться определенных мер предосторожности — очень точно поддерживать напряжение во время зарядки. В этой инструкции используются аккумуляторы на 3,7 В, которые требуют заряжающего напряжения 4,2 В. При превышении или уменьшении этого напряжения химическая реакция может выйти из-под контроля со всеми вытекающими последствиями.

Вот почему при работе с литиевыми батареями необходимо проявлять предельную осторожность. Если обращаться с ними осторожно, то они достаточно безопасны. Но если вы будете делать с ними недопустимые вещи, то это может привести к большим неприятностям. Поэтому их следует эксплуатировать только строго по инструкции.

Шаг 3: Выбор контроллера заряда литий-ионного аккумулятора.

Из-за высокой химической реактивности литиевых аккумуляторов вы должны быть на сто процентов уверены, что схема контроля напряжения заряда вас не подведёт.

Хотя можно изготовить собственную схему контроля напряжения, но лучше просто купить уже готовую схему, в работоспособности которой вы будете уверены. На выбор доступны несколько схем контроля заряда.

На данный момент Adafruit выпускает уже второе поколение контроллеров заряда для литиевых аккумуляторов с несколькими доступными значениями входящего напряжения. Это весьма неплохие контроллеры, но у них слишком большой размер. Вряд ли на их базе получится собрать компактное зарядное устройство.

В интернете можно купить небольшие модули контроллеров зарядки литиевых аккумуляторов, которые и используются в данном руководстве. На базе этих контроллеров я также собрал множество других самоделок. Они мне нравятся за компактность, простоту и наличие светодиодной индикации заряда аккумулятора. Как и в случае с Adafruit, при отсутствии солнца литиевый аккумулятор можно зарядить через USB порт контроллера. Возможность зарядки через USB порт является крайне полезной опцией для любого зарядного устройства на солнечных батареях.

Независимо от того, какой контроллер вы выбрали, вы должны знать как он работает и как его правильно эксплуатировать.

Шаг 4: USB порт.

Через USB порт можно заряжать большинство современных устройств. Это стандарт во всём мире. Почему бы просто не подключить USB порт напрямую к аккумулятору? Зачем нужна специальная схема для зарядки через USB?

Проблема заключается в том, что по стандарту USB напряжение составляет 5 В, а литий-ионные аккумуляторы, которые мы будем использовать в данном проекте, имеют напряжение всего 3,7 В. Поэтому нам придётся воспользоваться повышающей USB схемой постоянного тока, которая увеличивает напряжение до достаточного для зарядки различных устройств. В большинстве коммерческих и самодельных USB зарядок, наоборот, используются понижающие схемы, так как они собираются на базе аккумуляторов на 6 и 9 В. Схемы с понижением напряжения более сложные, поэтому в солнечных зарядных устройствах их лучше не применять.

Схема, которая применяется в данной инструкции, была выбрана в результате длительного тестирования различных вариантов. Она практически идентична схеме Minityboost Adafruit, но стоит дешевле.

Конечно вы можете купить онлайн недорогое зарядное USB устройство и разобрать его, но нам нужна схема, преобразующая 3 В (напряжение двух батареек АА) в 5 В (напряжение на USB). Разборка обычной или автомобильной USB зарядки ничего не даст, так как их схемы работают на понижение напряжения, а нам наоборот нужно повышать напряжение.

Кроме того следует учесть, что схема Mintyboost и используемая в проекте схема способны работать с гаджетами Apple, в отличии от большинства других зарядных USB устройств. Устройства от Apple проверяют информационные пины на USB, чтобы знать куда они подключены. Если гаджет Apple определит, что информационные пины не работают, то он откажется заряжаться. У большинства других гаджетов такая проверка отсутствует. Поверьте мне — я перепробовал множество дешёвых схем зарядки с интернет-аукциона eBay — ни от одной из них мне не удалось зарядить свой айфон. Вы же не хотите, чтобы от вашей самодельной USB зарядки нельзя было заряжать гаджеты Apple.

Шаг 5: Выбор аккумулятора.

Если вы немного погуглите, то обнаружите огромный выбор аккумуляторов разных размеров, ёмкостей, напряжений и стоимости. Поначалу во всём этом многообразии будет несложно запутаться.

Для нашего зарядного устройства мы будет использовать литий-полимерный (Li-Po) аккумулятор на 3,7 В, который очень напоминает аккумулятор для айпода или мобильного телефона. Действительно, нам нужен аккумулятор исключительно на 3,7 В, так как схема зарядки рассчитана именно на это напряжение.

То, что аккумулятор должен быть оснащён встроенной защитой от перезаряда и переразряда, даже не обсуждается. Обычно эта защита называется «PCB protection» («схема защиты»). Поищите по этим ключевым словам на интернет-аукционе eBay. Из себя она представляет всего лишь небольшую печатную плату с чипом, которая защищает аккумулятор от чрезмерного заряда и разряда.

При выборе литий-ионного аккумулятора смотрите не только на его ёмкость, но и на его физический размер, который преимущественно зависит от выбранного вами корпуса. В качестве корпуса у меня выступила жестяная коробка Altoids, так что я был ограничен в выборе аккумулятора. Я сначала думал купить аккумулятор на 4400 мА*ч, но из-за его больших размеров мне пришлось ограничиться аккумулятором на 2000 мА*ч.

Шаг 6: Подсоединение солнечной батареи.

Если вы не собираетесь делать зарядное устройство с возможностью подзарядки от солнца, то можете пропустить этот этап.

В этом руководстве используется солнечная батарея в жестком пластиковом корпусе на 5,5 В и 320 мА. Вам подойдет любая большая солнечная батарея. Для зарядного устройства лучше всего выбирать батарею, рассчитанную на напряжение 5 — 6 В.

Возьмите провод за кончик, разделите его на две части и немного зачистите концы. Провод с белой полоской отрицательный, а полностью чёрный провод — положительный.

Припаяйте провода к соответствующим контактам с обратной стороны солнечной батареи.

Закройте места пайки с помощью изоленты или горячего клея. Это защитит их и поможет снизить нагрузку на провода.

Шаг 7: Сверлим жестяную коробку или корпус.

Так как в качестве корпуса я использовал жестяную коробку Altoids, то мне пришлось немного поработать дрелью. Кроме дрели нам понадобится ещё и такой инструмент, как дремель.

Перед тем, как начать работу с жестяной коробкой, сложите в неё все компоненты, чтобы убедиться на практике, что она вам подходит. Продумайте, как лучше всего в ней разместить компоненты, и только потом сверлите. Места расположения компонентов можете обозначить маркером.

После обозначение мест можете приниматься за работу.

Вывести USB порт можно несколькими способами: сделать небольшой надрез прямо вверху на коробке или же сбоку на коробке просверлить отверстие соответствующего размера. Я решил сделать отверстие сбоку.

Сначала приложите USB порт к коробке и обозначьте его место. Внутри обозначенной области просверлите дрелью два или больше отверстий.

Зашлифуйте отверстие дремелем. Обязательно соблюдайте технику безопасности, чтобы не травмировать пальцы. Ни в коем случае не держите коробку в руках — зажмите её в тиски.

Далее убедитесь, что в сделанное вами отверстие свободно проходит USB порт.

Просверлите отверстие диаметром 2,5 мм для USB порта. При необходимости расширьте его с помощью дремеля. Если вы не планируете устанавливать солнечную батарею, то в отверстии 2,5 мм нет необходимости!

Шаг 8: Подключение контроллера зарядки.

Одна из причин, по которой я выбрал этот компактный контроллер зарядки, это его высокая надёжность. У него четыре контактные площадки: две впереди рядом с портом mini-USB, куда подаётся постоянное напряжение (в нашем случае от солнечных батарей), и две сзади для аккумулятора.

Чтобы подключить разъём 2,5 мм к контроллеру зарядки, необходимо подпаять два проводка и диод от разъёма к контроллеру. Кроме того желательно воспользоваться термоусадочными трубками.

Зафиксируйте диод 1N4001, контроллер зарядки и разъём 2,5 мм. Расположите разъём перед собой. Если смотреть на него слева направо, то левый контакт будет отрицательным, средний — положительным, а правый вообще не используется.

Один конец проводка припаяйте к отрицательной ножке разъёма, а другой к отрицательному контакту на плате. Кроме того желательно воспользоваться термоусадочными трубками.

Ещё один проводок припаяйте к ножке диода, рядом с которой нанесена метка. Припаивайте его как можно ближе к основанию диода, чтобы сэкономить побольше свободного места. Припаяйте другую сторону диода (без метки) к средней ножке разъёма. Опять же, постарайтесь припаять максимально близко к основанию диода. И в завершение подпаяйте проводок к положительному контакту на плате. Кроме того желательно воспользоваться термоусадочными трубками.

Шаг 9: Подключение аккумулятора и USB схемы.

На данном этапе потребуется всего лишь подпаять четыре дополнительных контакта.

Нужно подсоединить аккумулятор и USB схему к плате контроллера зарядки.

Сначала отрежьте несколько проводков. Подпаяйте их к положительным и отрицательным контактам на USB схеме, которые расположены на нижней стороне платы.

После этого соедините вместе эти проводки с проводками, идущими от литий-ионного аккумулятора. Убедитесь, что вы соединили вместе отрицательные проводки и соединили вместе положительные проводки. Напоминаю, что красные провода у нас положительные, а чёрные — отрицательные.

После того, как вы скрутили проводки вместе, приварите их к контактам на аккумуляторе, которые находятся на обратной стороне платы контроллера зарядки. Перед пайкой проводки желательно продеть в отверстия.

Теперь можно поздравить вас — вы на 100% справились с электрической частью этого проекта и можете немного расслабиться.

На этом этапе неплохой идеей будет проверить работоспособность схемы. Так как все электрические компоненты подсоединены, то всё должно работать. Попробуйте зарядить айпод или любой другой гаджет, оснащённый USB портом. Устройство не будет заряжаться, если аккумулятор разряжен или неисправен. Кроме того поместите зарядное устройство на солнце и посмотрите будет ли заряжаться аккумулятор от солнечной батареи — при этом должен загореться маленький красный светодиод на плате контроллера зарядки. Также вы можете зарядить аккумулятор через mini-USB кабель.

Шаг 10: Электрическая изоляция всех компонентов.

Перед тем, как разместить все электронные компоненты в жестяной коробкой, мы должны быть уверены, что она не сможет стать причиной короткого замыкания. Если у вас пластиковый или деревянный корпус, то пропустите этот этап.

На дне и по бокам жестяной коробки наклейте несколько полос изоленты. Именно в этих местах будет находиться USB схема и контроллер зарядки. На фотографиях видно, что контроллер зарядки у меня остался незакреплённым.

Постарайтесь тщательно всё заизолировать, чтобы не произошло короткого замыкания. Перед тем, как наносить горячий клей или наматывать изоленту, убедитесь в прочности пайки.

Шаг 11: Размещение электронных компонентов в корпусе.

Так как 2,5 миллиметровый разъём необходимо закрепить с помощью болтов, то разместите его в первую очередь.

После установки разъёма далее необходимо разместить USB схему. Нанесите на неё небольшое количество горячего клея, расположите правильно в корпусе и ещё раз смажьте горячим клеем.

На моей USB схеме сбоку имелся переключатель. Если у вас такая же схема, то сначала проверьте работает ли переключатель, который нужен для включения и отключения «режима зарядки».

И наконец нужно закрепить аккумулятор. С этой целью лучше использовать не горячий клей, а несколько кусочков двустороннего скотча или изоленты.

Шаг 12: Эксплуатация самодельного зарядного устройства на солнечных батареях.

В завершение поговорим о правильной эксплуатации самодельной USB зарядки.

Заряжать аккумулятор можно через mini-USB порт или от солнца. Красный светодиод на плате контроллера зарядки указывает на процесс зарядки, а синий на полностью заряженный аккумулятор.

Во время своего последнего похода мне удалось в самолёте зарядить свой iPhone 4 почти на 80%, учитывая, что при этом я слушал музыку. Ёмкость аккумулятора составляла 2000 мА*ч. Чтобы зарядить аккумуляторы на 4400 или 6600 мА*ч, потребуется намного больше времени. Особенно это относится к айподам и другим планшетам.

Хотя это и достаточно сложная инструкция, я надеюсь, что вам удалось собрать своими руками USB зарядку с литий-ионным аккумулятором. Учитывая, что цены на литиевые аккумуляторы и контроллеры к ним падают, то нет никакого смысла делать самодельную зарядку на аккумуляторах других типов. Литий-ионные аккумуляторы особенно хорошо подходят для проектов, в которых крайне важны габариты устройства. Сейчас можно купить литий-ионные аккумуляторы даже самых безумно маленьких размеров. Это самый лучший источник энергии для автономных походов.

Так что, если вы планируете сделать своими руками очень мощное солнечное зарядное устройство для вашего телефона, планшета, айпада, айпода, айфона, GPS-навигатора или проекта Arduino и выберете этот проект, то вы не прогадаете. Особенно, если вам удастся всё аккуратно разместить в небольшой коробочке!

Также рекомендуем посмотреть нашу инструкцию по сборке USB зарядки с питанием от велосипедной динамо-втулки.

Лучший чехол для аккумулятора diy — отличные предложения на чехол для аккумулятора diy от глобальных продавцов чехлов для аккумуляторов diy

Отличные новости !!! Вы находитесь в нужном месте для самостоятельного приобретения футляра для аккумулятора. К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально есть тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене.Каждый день вы найдете новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку этот лучший чехол для батареи своими руками вскоре станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели свой чехол для аккумулятора своими руками на AliExpress. Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы до сих пор не знаете, как сделать чехол для аккумулятора своими руками и думаете о выборе аналогичного товара, AliExpress — отличное место, чтобы сравнить цены и продавцов.Мы поможем вам решить, стоит ли доплачивать за высококлассную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь. И, если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе.Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца. Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет. Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести diy battery case по самой выгодной цене.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы. На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.

Вот как вы создаете портативный чехол для зарядного устройства, который удовлетворит все ваши потребности в электроэнергии

Если вы стреляете на месте (и даже если нет), у вас должна быть тонна батарей для питания вашего боевого коня.Камера берет батарейки, фары — батарейки, пульты, телефоны, мониторы. На самом деле, большинство устройств используют более одной батареи. И для каждого комплекта батарей требуется собственное зарядное устройство. И каждому зарядному устройству нужна розетка. Это кошмар. Если вы захотите взять все это на месте, вы получите грязный стол, полный спагетти с кабелями. Там должен быть лучший способ!

Есть! Видеооператор Яир Шилоач придумал эту зарядную станцию, которая не только поддерживает все в порядке, но и упрощает настройку и разборку.

Основная идея заключалась в том, чтобы хранить все необходимые Yair заряды в одном месте с помощью одного источника питания, сохраняя при этом максимальную гибкость.

Яир использует алюминиевый жесткий футляр для хранения всех своих зарядных устройств и аккумуляторов. Есть шаг, который охватывает большую часть случая.

Над ступенькой Яир кладет свои зарядные устройства. Под ступенькой есть место для кабелей, зарядных плат, встроенный удлинитель и небольшая вентиляция.

Разветвитель питания (полоса на 10 шт.) Не заканчивается обычной вилкой, он заканчивается вилкой питания C14, рассчитанной на напряжение до 250 В при 10 А.Эта вилка перекрывает всю мощность, необходимую внутри корпуса.

Настоящий ум, однако, происходит на верхней стороне ступеньки. Яир выбрал зарядное устройство Watson Duo LCD Charger в качестве основы системы из-за его способности менять пластины. Это означает, что мощность зарядки поступает на те комплекты батарей, которые в ней больше всего нуждаются. Вспомните те зарядные пластины, которые Яир хранит под ступенькой, если будет нехватка мощности NPF, Watson получит пластины NPF, если ему нужно больше аккумуляторов Canon LP-E6, Watsons получат пластины LP-E6.Вы уловили идею. Watsons также обеспечивает индикацию уровня заряда батареи в реальном времени, поэтому вы можете менять батареи сразу после их зарядки.

Но даже с Watsons остались два «обычных» зарядных устройства Canon LC-E6 и два «обычных» зарядных устройства Sony NP-F. Также есть зарядное устройство NiteCore-D4 на 4 точки для хорошей меры.

У каждого зарядного устройства есть небольшая застежка-липучка на дне, и они размещаются непосредственно на дереве (без пены), поэтому тепло не попадает на пену.

Вся эта установка чрезвычайно портативна, вы можете вынуть весь комплект и установить зарядную станцию ​​за секунды (и переустановить на следующий день, если вы делаете несколько дней подряд). Другой вариант — выбрать одну единицу и отсоединить ее от велко.

Последний совет. Никогда не подключайте такую ​​станцию ​​к электросети с закрытой крышкой. Тепло, выделяющееся внутри корпуса, может вызвать возгорание. В этом случае все ваши батареи разрядятся, и вы потеряете работу и, возможно, деньги, которые у вас есть.

Яир Шилоах не только мастерит, но и неплохой видеооператор. Вы можете посетить его страницу в Facebook и на его сайте, чтобы узнать больше.

Я сделал собственное портативное зарядное устройство для телефона, и я не бил себя электрическим током

Переносное зарядное устройство, наверное, самая полезная техника, которую я ношу с собой, кроме телефона. Я ужасно боюсь не забывать заряжать свой телефон, пока не застряну в метро с задержкой в ​​19:00 по дороге домой, отчаянно пытаясь выжать последние несколько секунд автономной работы.

Итак, я в целом придерживаюсь мнения, что не может быть слишком много резервных зарядных устройств. (Я обычно ношу с собой три, что, я признаю, может быть излишним.) Но купить аккумуляторную батарею на Amazon или Best Buy легко.

Я хотел попробовать сделать свою собственную — и мне это удалось, даже не порезав себя током. Аккумуляторная батарея DIY здесь, по сути, представляет собой зарядное устройство для телефона USB, которое работает от батарей 9 В, и все это одето в причудливый алюминиевый корпус (например, мятную банку).

Стоит отметить, что вы не получите от этого много энергии для зарядки телефона — у большинства 9-вольтовых батарей около 550 мАч заряда, чего едва хватает для зарядки половины современного смартфона. Кроме того, все это намного более хрупкое (и подвержено ошибкам, если вы испортите проводку), чем обычный блок питания, который, помимо того, что он более безопасен и надежен, еще и перезаряжаемый.

Но все же, если вы застряли в 7-Eleven во время апокалипсиса или у вас есть запас батарей на 9 В, которые вы хотите использовать, самодельное зарядное устройство может работать как аварийная альтернатива.

Принадлежности

  • Автомобильное зарядное устройство USB , которое послужит основой вашего самостоятельного аккумуляторного блока. Для этого проекта подойдет практически любая модель — моя пришла с заправки за пару долларов.
  • 9-вольтовый зажим для батареи , который выглядит как одна из тех черных подушечек с двумя защелками для подключения батареи с выходящими проводами. Вы можете купить его (они довольно дешевые) или найти где-нибудь. Это то, что вы используете для подключения 9-вольтовой батареи, которая фактически питает зарядное устройство.
  • Очевидно, вам также понадобится с батареей на 9 В, или две тоже.
  • Паяльник , который понадобится для подключения проводов к зарядному устройству. Если вы не из тех, кто может безопасно пользоваться паяльником, сейчас хорошее время, чтобы найти взрослого или друга, который может это сделать.
  • Мятная банка Altoids — сначала ешьте мятные конфеты — и у вас будет удобное место для хранения всех вещей
  • Вам также понадобятся инструменты (плоскогубцы , молоток, гвоздь ), чтобы проделать отверстие на боковой стороне банки, и немного изоленты, чтобы все удерживать.

Собираем вместе

Когда у вас есть все необходимое, собрать зарядное устройство станет довольно просто. Сначала вам нужно разобрать пластиковый корпус автомобильного зарядного устройства с помощью плоскогубцев и извлечь внутреннее оборудование. Вам нужен USB-порт, подключенный к печатной плате.

Затем нагрейте паяльник и аккуратно и надежно припаяйте провода к зарядному устройству. Красный провод (положительный) идет к пружине (которую, в отличие от моей версии, вы, вероятно, захотите немного подрезать), а черный провод (отрицательный) идет к любой из двух боковых панелей.Очень важно не перепутать их.

После того, как вы все спаяли, технически у вас есть исправное зарядное устройство для дома. Но вы, вероятно, не захотите таскать в кармане такую ​​оголенную проводку питания, поэтому вам понадобится чехол.

Взяв молоток и гвоздь, осторожно проделайте несколько отверстий в мятной банке, расширяя их с помощью плоскогубцев, пока не останется место для USB-порта.Затем заклейте все изолентой, подключите аккумулятор и кабель, и все готово!

(Или, может быть, когда вы на заправке покупаете автомобильное зарядное устройство USB, просто купите вместо него перезаряжаемое. Это, вероятно, проще.)

Diy 18650 зарядное устройство чехол коробка usb power bank коробка для iphone смартфон продажа

Способы доставки

Общее расчетное время, необходимое для получения вашего заказа, показано ниже:

  • Вы размещаете заказ
  • (Время обработки)
  • Отправляем Ваш заказ
  • (время доставки)
  • Доставка!

Общее расчетное время доставки

Общее время доставки рассчитывается с момента размещения вашего заказа до момента его доставки вам.Общее время доставки делится на время обработки и время доставки.

Время обработки: Время, необходимое для подготовки вашего товара (ов) к отправке с нашего склада. Это включает в себя подготовку ваших товаров, выполнение проверки качества и упаковку для отправки.

Время доставки: Время, в течение которого ваш товар (-ы) дойдет с нашего склада до пункта назначения.

Рекомендуемые способы доставки для вашей страны / региона указаны ниже:

Отправить по адресу:

Корабль из

Этот склад не может быть доставлен к вам.

Способ (-ы) доставки Срок доставки Информация для отслеживания

Примечание:

(1) Вышеупомянутое время доставки относится к расчетному времени в рабочих днях, которое займет отгрузка после отправки заказа.

(2) Рабочие дни не включают субботу / воскресенье и праздничные дни.

(3) Эти оценки основаны на нормальных обстоятельствах и не являются гарантией сроков доставки.

(4) Мы не несем ответственности за сбои или задержки в доставке в результате любых форс-мажорных обстоятельств, таких как стихийное бедствие, плохая погода, война, таможенные проблемы и любые другие события, находящиеся вне нашего прямого контроля.

(5) Ускоренная доставка не может быть использована для почтовых ящиков

.

Расчетные налоги: Может взиматься налог на товары и услуги (GST).

Способы оплаты

Мы поддерживаем следующие способы оплаты.Нажмите, чтобы получить дополнительную информацию, если вы не знаете, как платить.

* В настоящее время мы предлагаем оплату наложенным платежом для Саудовской Аравии, Объединенных Арабских Эмиратов, Кувейта, Омана, Бахрейна, Катара, Таиланда, Сингапура, Малайзии, Филиппин, Индонезии, Вьетнама, Индии. Мы отправим код подтверждения на ваш мобильный телефон, чтобы проверить правильность ваших контактных данных. Убедитесь, что вы следуете всем инструкциям, содержащимся в сообщении.

* Оплата в рассрочку (кредитная карта) или Boleto Bancário доступна только для заказов с адресами доставки в Бразилии.

DIY 18650 зарядное устройство чехол коробка USB Power Bank Box для iPhone смартфон

Описание продукта

DIY 18650 Зарядное устройство Чехол Коробка USB Power Bank для iPhone Смартфон Мобильный телефон

Введение:
Маленький и легкий вес, легко носить с собой в сумке.
Стандартный выход USB.
Заряжайте портативное устройство в пути без использования основного источника питания.
Заряжайте большинство популярных устройств, включая iPhone, iPod, Blackberry, мобильные телефоны Sony, MP3.MP4, GPS, КПК, PSP,
Цифровая камера iPhone 5S, 5, 4S, 4; Samsung Galaxy s3, s4 и др ..
легко подключить с помощью USB-кабеля для подключения зарядного устройства и оборудования
Безопасный и надежный, с использованием системы защиты от напряжения, чтобы избежать короткого замыкания и автоматического отключения, интеллектуальная зарядка
Длительный срок службы, подзарядка более 500 раз

Спецификация:

Цвет: белый / желтый / розовый / синий / зеленый / черный
Размер: 96 x 24 x 22 мм
Емкость: 2600 мАч
Выход: 5 В-1000 мА
Вход: 5 В-800 мА
Емкость: можно установить 1 шт. аккумулятор 18650.(Батарея 18650 не входит в комплект)

В коплект входит:

1 крышка корпуса Power Bank (батарея в комплект не входит)

Подробнее:

Более подробные фотографии:

Дополнительная информация

При заказе на Alexnld.com вы получите письмо с подтверждением.Как только ваш заказ будет отправлен, вам будет отправлено электронное письмо с информацией об отслеживании доставки вашего заказа. Вы можете выбрать предпочтительный способ доставки на странице информации о заказе во время оформления заказа. Alexnld.com предлагает 3 различных метода международной доставки, авиапочту, зарегистрированную авиапочту и услугу ускоренной доставки, следующие сроки доставки:

Зарегистрировано авиапочтой и авиапочтой Площадь Время
США, Канада 10-25 рабочих дней
Австралия, Новая Зеландия, Сингапур 10-25 рабочих дней
Великобритания, Франция, Испания, Германия, Нидерланды, Япония, Бельгия, Дания, Финляндия, Ирландия, Норвегия, Португалия, Швеция, Швейцария 10-25 рабочих дней
Италия, Бразилия, Россия 10-45 рабочих дней
Другие страны 10-35 рабочих дней
Ускоренная доставка 7-15 рабочих дней по всему миру

Мы принимаем оплату через PayPal , и кредитную карту.

Оплата через PayPal / кредитную карту —

ПРИМЕЧАНИЕ. Ваш заказ будет отправлен на ваш адрес PayPal. Убедитесь, что вы выбрали или ввели правильный адрес доставки.

1) Войдите в свою учетную запись или воспользуйтесь кредитной картой Express.

2) Введите данные своей карты, и заказ будет отправлен на ваш адрес PayPal. и нажмите «Отправить».

3) Ваш платеж будет обработан, и квитанция будет отправлена ​​на ваш почтовый ящик.

Отказ от ответственности: это отзывы пользователей.Результаты могут отличаться от человека к человеку.

Беспроводное зарядное устройство

В центральной консоли DIY. 2014+ Тундра

Хорошо, что беспроводная зарядка была у нас уже пару лет, и теперь, когда IPhone присоединился к беспроводной игре. И наша нынешняя Tundra без заводского беспроводного зарядного устройства и центральной консоли — идеальное место для этого. Вот так.
Теперь я отредактировал это, добавив более полезную информацию. Спасибо @smooosh за предоставленные хорошие указатели.
Время: 30 минут

Инструменты / расходные материалы: магнитная отвертка Phillips
Бокорезы
Шлифовальный блок
Шлифовальная машина или мягкая угловая шлифовальная машина
Изолента (scotch super 33)
Пластиковая эпоксидная смола (клей гориллы)

Питание зарядного устройства: пара способов сделать это.
1 способ — подключить к розетке на центральной консоли. У меня есть разветвитель, к которому мой подключается.
2-й способ, благодаря @smooosh, вы можете подключить его, перейдя по его ссылке здесь: https: // www.tundras.com/threads/usb-port-for-rear-seat-and-hardwiring-your-wireless-charger.19248/

Выбор зарядного устройства: за последнюю неделю с тех пор, как я приобрел свой iPhone X, я купил несколько зарядных устройств на Amazon. чтобы увидеть, какой из них заряжается не только быстро, но и может заряжаться через пластиковую верхнюю часть консоли. Я установил одну зарядную площадку, чтобы лучше всего заполнить пространство (рис. Ниже). Теперь, поиграв с ним с момента установки, он действительно заряжается очень хорошо, большинство более тонких чехлов работают мгновенно, но ящик для выдры будет зависеть от размещения в толстом корпусе.Как я уже сказал, он заряжается, но размещение является ключевым моментом, поэтому, если вы все время запускаете ящик с выдрой, не волнуйтесь, я все равно дам вам вариант. В этом DIY я устанавливаю под крышкой консоли, но вы можете предпринять те же шаги и установить ее сверху в вырезе и все же скрыть провода.
(редактировать: после ввода нескольких полезных членов зарядное устройство будет работать лучше всего, если вы разделите корпус зарядного устройства, чтобы катушки можно было установить непосредственно на крышку консоли. Это позволяет лучше заряжать и заряжать через более толстые корпуса)
РЕДАКТИРОВАТЬ: Я добавил новый вариант зарядного устройства и способ крепления зарядного устройства к крышке консоли.

Зарядное устройство:
Зарядное устройство с возможностью быстрой зарядки

https://www.amazon.com/gp/aw/d/B01H76NIAS?psc=1&ref=yo_pop_mb_pd

https://www.amazon.com/Choetech-T51…id=1510576578&ref_=mp_s_a_1_sc_3&sr=8-3- заклинание (любезно предоставлено @smooosh) Я бы рекомендовал это зарядное устройство.

https://www.amazon.com / gp / product / B01FMDQK80 / ref = oh_aui_detailpage_o00_s01? ie = UTF8 & psc = 1

Также обратите внимание на адаптер розетки для быстрой зарядки USB 3.0, который поможет включить быструю зарядку вашего зарядного устройства:

https://www.amazon.com/Spigen-Charg…d=1521723453&sr=8-6&keywords=car+fast+charger

* Для скрытой установки выполните шаги 1-8
* Для зарядного устройства с верхним креплением выполните шаги 1 -3 затем перейдите к нижней части для дальнейших шагов.

Шаг 1: откройте крышку консоли и выверните 2 винта, которые удерживают защелку на месте, и отведите ее в сторону.

Шаг 2: Вы увидите маленькие винты по краям, а посередине они крошечные (почему я рекомендую магнитную отвертку). Таких ребят 18, уберите их всех. И положите безопасно в сторону (или подстаканник). Теперь, когда все они удалены, вы просто потяните за панель, и она сразу же оторвется или упадет, когда вы вывинтите последний винт.

Шаг 3: Теперь вы увидите 6 серебряных винтов вокруг выреза.Снимите все шесть и вытащите панель. (Я забыл сделать снимок, когда вынул его)

Шаг 4: Теперь вы увидите, что у него есть пластиковые ребра в правом нижнем углу, куда вы хотите поместить зарядное устройство. Теперь вы захотите отрезать их. Я использовал кусачки. Вы можете разрезать их и немного повернуть и потянуть, и они легко оторвутся. Или, если у вас есть небольшая ручная пила, она тоже подойдет. После того, как вы снимете их, вы захотите разгладить их с помощью шлифовального блока, бумаги или шлифовальной машины.

Шаг 5: Поместите зарядное устройство, которое вы выберете, вплотную к панели (Правка: здесь вы теперь разделите корпус зарядного устройства, сняв верх и поместив катушки прямо на крышку консоли) и закрепите его изолентой. крышку и убедитесь, что порт зарядки направлен вниз, чтобы можно было пропустить через него кабель для зарядки.
Я использовал пистолет для горячего клея, чтобы прикрепить свой, но после хорошей зимы он не выдержал, поэтому я переделал его пластиковой эпоксидной смесью.

Шаг 7: переустановите панель, удерживая зарядное устройство с помощью 6 винтов, и вставьте зарядный кабель.И поместите на нее большую нижнюю крышку и очистите кабель, из которого выйдет, и нижний квадратный держатель.

Шаг 8: Вверните 18 маленьких винтов на большую панель, затем установите защелку крышки и 2 винта. Теперь подключите кабель зарядного устройства, как вам удобнее. Закройте консоль крышкой и тада.

Шаг 4b: Теперь мы готовы проложить кабель для зарядки. Шаги 1–3 заключались в том, чтобы спрятать провод внутри крышки консоли. Здесь у вас есть 2 варианта прокладки зарядного кабеля.
1 — можно просверлить небольшое отверстие в крышке и пропустить через него кабель.
2-Вы можете удалить 6 винтов, которые продевают отверстие в панели, вытащить ее, пропустить провод через верхнюю часть и между крышкой и вырезать.

Шаг 5b: прикрепите зарядное устройство к крышке консоли. Двусторонняя лента длиной 3 м подойдет лучше всего и хорошо держится.

Шаг 6b: Установите на место панель под крышкой с помощью 18 винтов, а затем защелку с помощью 2 винтов.

Теперь ваше беспроводное зарядное устройство установлено и спрятано.
Любые вопросы или комментарии ниже, я буду рад ответить.

2000-12000 мАч 4X 18650 Цифровой двойной USB Power Bank Зарядное устройство для аккумулятора DIY Box Бытовая электроника Patterer Многоцелевые аккумуляторы и мощность

2000-12000 мАч 4X 18650 Цифровой двойной USB-аккумулятор Power Bank Чехол для зарядного устройства DIY Box

2000-12000MAh 4X 18650 Цифровой двойной USB-аккумулятор Power Bank Чехол для зарядного устройства DIY Box. Тип аккумулятора: 4 × 18650 (без аккумулятора 18650). 1 чехол для самостоятельного изготовления внешнего аккумулятора (без аккумулятора 18650).Универсальный для одного аккумулятора, двух аккумуляторов, трех аккумуляторов, четырех аккумуляторов. Он может работать с одной батареей или четырьмя батареями, и емкость может быть произвольно выбрана. Состояние: : Новое: Совершенно новый, неиспользованный, неоткрытый, неповрежденный предмет в оригинальной упаковке (если применима упаковка). Упаковка должна быть такой же, как в розничном магазине, если товар не сделан вручную или не был упакован производителем в нерозничную упаковку, такую ​​как коробка без надписи или полиэтиленовый пакет. См. Список продавца для получения полной информации.См. Все определения условий : Бренд: Безымянный , Тип батареи: : 4 × 18650 (батарея 18650 в комплект не входит) : MPN: : Не применяется , Емкость аккумулятора: : 2000 мАч-12000 мАч : Количество включенных аккумуляторов: : Нет , Входное напряжение: : DC5V 2A : Цвет: : Случайная поставка , Выходное напряжение: : 5V / 2.5A : UPC: : Не применяется ,。

2000-12000MAh 4X 18650 Цифровой двойной USB Power Bank чехол для зарядного устройства DIY Box

ДЛЯ AVC DASA0515R2U вентилятор охлаждения DC12V 0.20A 45 * 45 * 15 мм 4-контактный PWM FU8, Smart Bluetooth Tracker Детский кошелек для домашних животных Key Finder Locator Alarm Anti-lost. Комплект громкой связи для автомобильного адаптера Bluetooth для BMW 40Pin X3 X5 Z4 Z8 Mini R5x. Mini Auto Insert Blade Fuse Holder Splash-proof for 12V 30A Fuse Car Truck Acc. B4 B4 A4 A4 K6 K5 C4 Новый оригинальный 17-дюймовый ЖК-дисплей K1 LC171W03 LC171W03, 1 компл. HiFi GF-JSR50M с родиевым покрытием, красный медный штекер переменного тока с родиевым покрытием, WESTINGHOUSE FAN FAN FORCED OVEN HEATER ELEMENT 2200W PDL790S POJ787 POL790S POJ787. Удлинитель VGA через приемник / удлинитель CAT5 1080p / 1000 футов.HT1085 Запасная лампа для проектора BenQ 5J.J9H05.001 HT1075, Aleph 3 30 Вт Усилитель класса A D.I.Y .. 20X 5.5×2.1 мм Разъем питания постоянного тока с гнездом для камеры видеонаблюдения DVR. 4-дюймовый автомобильный видеорегистратор с двумя объективами HD 1080P видеорегистратор с сенсорным экраном камеры Новый, 10 * OEM Connect пылезащитный чехол для портативного MOTOROLA APX5000 APX6000 APX7000 APX8000. Kenwood TS-940SAT Радиолюбительский радиолюбительский пылезащитный чехол, обжимной коаксиальный кабель RG6 F-Type F Кольцевой адаптер 1/4 «Aerial Sky СПУТНИКОВОЕ ТВ. И четырехъядерные системы с золотым контактным разъемом DIN-7 6-футовый аудиокабель Naim для BO, 2 пары амбушюров Замена для беспроводных наушников Bluetooth JBL E35 E45bt E 45.Автомобильный шнур OMNIHIL 50FT для холодильника с морозильной камерой Engel MR040F-U1.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *