Лазерные фары своими руками: 👉 лазерные фары своими руками

Лазерные фары для автомобиля

Техника не стоит на месте — иногда создаётся впечатление, что в последнее время срок использования изобретения сократился всего до нескольких лет. Ещё недавно достаточно дорогой новинкой, проходившей предсерийные испытания, были светодиодные фары, а до них аналогичный путь прошли ксеноновые и галогеновые лампы. Теперь же на мировую технологическую арену выходят лазерные фары, которые обладают ещё более сложным принципом действия и намного большей эффективностью, чем все источники света, которые были созданы до настоящего дня. Чтобы понять, скоро ли мы увидим лазерные фары на своих автомобилях, и что даст нам их применение, стоит подробнее разобраться в принципе их устройства.

Лазерные фары – это ещё один шаг к технологиям будущего

Содержание

  • Новейшая технология
  • Основные преимущества
  • Модификации
  • Когда ждать?

Новейшая технология

Не стоит думать, что лазерные фары головного света подобны тем, что были установлены на автомобиле всемирно известного шпиона Джеймса Бонда — они являются абсолютно безопасными для окружающих и не способны поджигать своим излучением мешающие вам транспортные средства. Понятно, что на гражданские автомобили будут устанавливаться абсолютно безопасные для окружающих источники света, которые просто существенно повысят эффективность освещения дороги перед транспортным средством. Чтобы понять лучше принцип, по которому работают лазерные фары, стоит рассмотреть их устройство.

В их основу положена уникальная технология рассеяния, которая основана на применении такого химического элемента, как жёлтый фосфор — фактически, лазер используется только в качестве средства, обеспечивающего его свечение. Следовательно, лазерное освещение не может применяться для того, чтобы наносить вред окружающим, на радость большинству участников дорожного движения, и к огорчению поклонников знаменитого английского разведчика. Если рассматривать технологию, созданную концерном BMW, то можно заметить, что в ней используется три синих лазера, которые направлены на кубический осветительный элемент, наполненный фосфором. Через минимальное время после попадания на него луча он начинает испускать очень яркое белое излучение, интенсивность которого в несколько раз выше, чем у иных источников света при сходных энергетических затратах. За фосфорным источником света в лазерных фарах установлен отражатель особой конструкции, который позволяет концентрировать до 99,95% излучения на дороге.

На видео презентация лазерных фар BMW M4:

Многие люди, которые видят перед собой лазерные фары для авто в разрезе, начинают сомневаться, не нанесёт ли подобная технология вреда окружающим — ведь лазеры известны своей способностью ослеплять глаза человека и даже нарушать целостность некоторых материалов при достаточно высокой мощности источника излучения. Однако специалисты компании BMW, которая первая представила прототип лазерных фар, указывают на то, что сам лазер используется исключительно для «розжига» фосфорного осветительного элемента, следовательно, для водителей встречного транспорта, а также людей, встреченных около дороги, такая светотехника будет абсолютно безопасной. Даже если автомобиль, оснащённый лазерными фарами, попадёт в аварию и целостность его фонарей будет нарушена, источники излучения будут моментально отключены, что позволит свести к минимуму опасность такого источника света для окружающих.

Основные преимущества

Конечно, у такой технологии есть свои недостатки — в частности, сделать лазерные фары своими руками точно не получится, так как при их изготовлении применяются высокотехнологичные материалы, производство которых обходится достаточно дорого. Однако, в целом от эксплуатации лазерных фар автомобиль только выигрывает. В частности, как уже говорилось ранее, при сходных затратах электроэнергии полученная яркость может быть в несколько раз больше. Лазерные фары от BMW, в настоящее время имеющие статус прототипа, уже позволяют получить интенсивность свечения в 1,7–1,8 раза больше при мощности, меньшей на 50% по сравнению с галогеновыми и ксеноновыми.

Лазерные фары освещают больше и не мешают другим водителям

Кроме того, лазерный свет фар даёт возможность не только увеличить чёткость распознания объектов, расположенных на пути автомобиля — он имеет в два раза большую дальность даже по сравнению с ксеноновыми фонарями. Предельный показатель равен примерно 500–600 метров, что существенно повышает безопасность при движении с высокой скоростью. При этом фосфор, используемых в лазерных фарах, создаёт почти идеальный свет белого спектра, что также улучшает видимость в сравнении с традиционными желтоватыми лучами ламп накаливания и галогеновых источников света.

У многих людей возникает вопрос — а не будут ли такие лазерные фары с увеличенной дальностью свечения и невероятной яркостью мешать встречному транспорту. Действительно, такая проблема возникла на начальном этапе разработки, однако её достаточно быстро решили при помощи современных технологий. Микроконтроллеры позволяют ограничивать направление, в котором распространяется пучок света лазерных фар, предотвращая создание помех для остальных участников дорожного движения. При этом компания BMW на этом этапе также решила вопрос с движением по крутым «серпантинам», на которых электроника просто не успевала отреагировать на изменение дорожной обстановки. После распознания изменений дорожных условий лазерные фары переводятся в режим имитации обычных фонарей, что позволяет достичь компромисса между эффективностью и безопасностью.

Модификации

Пока первые апробации проходят лазерные фары, принцип работы которых ещё не доведён до совершенства, на некоторых серийных автомобилях BMW и Audi уже устанавливаются дополнительные лампы, использующие аналогичный принцип функционирования. Устанавливающиеся совместно с противотуманными фонарями, они имеют принцип работы, основанный на подсвечивании дорожных помех, способных представлять серьёзную опасность для транспортного средства, движущегося на высокой скорости. В частности, компания BMW использует такие лазерные фары для предотвращения столкновения с пешеходами, выходящими на дорогу.

Принцип работы устройства достаточно непрост — вначале человека или иное живое существо достаточно крупных размеров (например, оленя) обнаруживает инфракрасный радар, позволяющий улавливать тепловое излучение на большом расстоянии. Он отслеживает его положение в режиме реального времени, и передаёт сигнал на специальные лазерные «поисковые огни», установленные в одном блоке с противотуманными лампами. В свою очередь, те создают достаточно узкий пучок излучения, который позволяет осветить «живое препятствие» и предотвратить тем самым аварию с фатальными последствиями. В среднем, подобные «поисковые огни» позволяют выиграть 1–5 секунд в обнаружении на дороге живого существа — кажется, будто это немного, однако стоит вспомнить, что автомобиль, движущийся с высокой скоростью, может проехать за это время больше ста метров.

Лазерные фары на BMW i8 добавляют этому автомобилю особый футуристический облик

Существуют и варианты, которые устанавливаются в качестве ламп головного света — однако существенный недостаток, которым обладают такие лазерные фары — цена, несколько раз большая, чем у светодиодных приспособлений. Кроме того, на трассах с большим количеством крутых поворотов электроника не всегда успевает вовремя отреагировать на изменение дорожной обстановке, в результате чего огромная яркость лазерных фар может стать минусом за счёт ослепления встречном. Поэтому лазерные источники света, использующиеся в качестве основных, мы увидим на современных автомобилях только спустя несколько лет. Пока же лазерные фары останутся уделом концептуальных новинок, представляемых на площадках международных выставочных центров.

Когда ждать?

Специалисты в области электроники автомобилей говорят, что лазерные фары пока что являются прототипами, которые могут использоваться только в наиболее дорогих автомобилях. При этом даже они пока что не доработаны до совершенства — в частности, основным недостатком остаётся проблема ослепления водителей встречного транспорта. Однако совершенно очевидно, что за такими источниками света — будущее автомобильных фар, так как при сходном энергопотреблении они обеспечивают намного большую эффективность работы, а, следовательно — безопасность дорожного движения в тёмное время суток. Что же касается серийного применения, то инженеры говорят, что создать относительно недорогие лазерные фары удастся через 5–10 лет.

как работают и светят, самостоятельная установка лазерных линз в фары

К источникам света головных прожекторов автомобиля предъявляется масса требований, во многом противоречивых. Это и дальность освещения, и безопасность для встречных водителей, и экономичность по потребляемой мощности, и низкая цена. Отсюда появляется разнообразие принципов преобразования электрической энергии в видимый свет.

Содержание статьи:

  • 1 Какие фары называются лазерными
  • 2 Как они работают и светят
  • 3 Устройство
  • 4 Плюсы и минусы лазерных фар
  • 5 Установка лазерных линз в фары авто

Здесь уходящие в прошлое лампы накаливания (галогенки), газоразрядные источники (ксенон), светодиоды и даже лазеры.

Последние обладают заметным преимуществом по эффективности – теоретически лазер является самым экономичным излучателем, поскольку светит строго на одной длине волны, не отвлекаясь в невидимые глазом паразитные диапазоны. Но реально всё очень непросто.

Какие фары называются лазерными

Невозможно использовать лазерный луч для прямого освещения дороги. Это связано именно с самим принципом его работы.

Лазеры создают строго монохромное излучение, то есть генерируют высокочастотные электромагнитные колебания на одной дискретной волне. Причем еще и фазированные, в физике это называют когерентным излучением.

Прочитай: Из-за чего потеют фары изнутри и как это устранить

Человек воспринимает это как четко определенный цвет, если конечно прибор генерирует в видимом диапазоне. Бывают лучи выше и ниже по частоте, зрением в инфракрасном или рентгеновском спектре мы не обладаем.

Для создания привычного белого света энергию лазерного луча приходится преобразовывать, то есть в таких фарах лазер – лишь источник электромагнитной энергии, а не осветитель непосредственно. Никакие «гиперболоиды» темноту не прорезают.

Как они работают и светят

В реальных конструкциях, давно производящихся серийно, когерентное излучение энергетически накачивает специальные вещества, которые способны принимать излучение одной длины волны, передавая его наружу в ином спектре — это люминофоры.

Далее полученный белый свет можно разными способами сфокусировать, создать световой пучок, который и осветит дорогу.

За счет экономного использования энергии в первичном излучателе мощность можно поднять без потерь на тепловой диапазон. В результате дальнобойность фары намного возрастает.

Даже самые первые серийные образцы легко освещали рубеж в 600 метров от автомобиля в режиме дальнего света. Появились и иные возможности, все определяется конструктивом, который непрерывно развивается.

Устройство

Уже существует минимум два поколения лазерных фар. Первое представляет собой простую (относительно) подмену источника излучения на комбинацию набора твердотельных лазеров и люминофорного кристалла.

Свет исходит в систему отражения и фокусировки, после чего отправляется освещать дорогу. Так выполнен прожектор дальнего света. Кроме него в корпусе фары расположены обычные светодиодные блоки ближнего и противотуманного света.

Читайте также: Как сделать подсветку колёс своими руками

Второе поколение располагает свойством адаптации. Для этого применено не одно зеркало, а множество более мелких, пиксельных.

Коммутируя их при помощи электронного блока, можно заставлять луч реагировать на дорожную обстановку, выделять важные объекты или выводить из освещения встречные автомобили, предотвращая ослепление.

Матричный принцип тот же, что и в соответствующих светодиодных головных источниках. Развитие идет по пути роста количества как излучающих твердотельных лазеров, так и элементов формирующей матрицы.

Плюсы и минусы лазерных фар

При использовании фар с лазерным источником дальнего света потребитель получает множество положительных и заметных изменений при единственном недостатке:

  • возрастает яркость, а значит и дальнобойность головного освещения;
  • потребляемая мощность не изменится, но использоваться эта энергия будет не на бесполезный нагрев в инфракрасном диапазоне, а исключительно для подсветки дороги на многие сотни метров;
  • появляется возможность четко управлять распределением светового пучка по зонам, интенсивно подсвечивать обочину, дорожные знаки, пешеходов, при этом блокировать ослепление встречного транспорта;
  • наиболее продвинутые источники способны выводить на дорожное полотно многоцветную картинку с полезной информацией, вплоть до графического представления.

Минус один – очень высокая цена. На серийных автомобилях эта опция обходится от десятка тысяч долларов и выше.

Соответственно цена приобретения новых фар, например, после ДТП, будет для многих неприемлемой. Впрочем, то же было с ксеноном и светодиодами. Цена снижается при массовом изготовлении.

Установка лазерных линз в фары авто

В продаже имеются линзовые модули для монтажа в серийные фары. Обычно они состоят из светодиодных блоков ближнего и противотуманного света, а также LED и лазерных блоков для дальнего.

Фокусировка осуществляется имеющейся в составе линзой, то есть рефлектор штатной фары не используется, что облегчает монтаж.

Установка состоит в разборе фары и переделки крепления имеющихся в её составе линзовых модулей под новый лазерный блок.

Важно обеспечить регулировку фары в нужном диапазоне, отвод тепла от модулей и лазеров, а также герметичность конструкции и правильность подключения.

Отсюда желательность проведения работы в специализированной мастерской по автосвету. Там лучше решат задачи по выбору модуля под конкретную машину, правильному и надежному монтажу в корпуса фар, а также грамотно и безопасно проделают электрические соединения и коммутацию.

Завершается процедура регулировкой пучков света ближнего и дальнего лучей.

Как работают лазерные фары | Hackaday

Когда мы думаем о поступательном движении автомобильных технологий, фары обычно не первое, что приходит на ум. Двигатели, топливная экономичность и переход на электроэнергию — все это в первую очередь. Однако это не означает, что тысячи инженеров по всему миру изо дня в день работают над улучшением современного автомобильного освещения.

Фары с закрытым светом уступили место более современным конструкциям после того, как правила были ослаблены, в то время как лампы заменили простые галогены на ксеноновые HID и, совсем недавно, на светодиоды. Теперь на сцену выходит новая технология с лазерами!

Лазерные фары?!

Прототип блока лазерной фары BWM проходит испытания.

Первое, что приходит на ум при слове «лазерные фары», — это лазерные лучи, вылетающие из передней части автомобиля. Очевидно, что когерентные лучи монохроматического света будут создавать плохое освещение за пределами очень специфического пятна, расположенного на значительном расстоянии. К счастью для наших глаз, лазерные фары вообще не работают таким образом.

Вместо этого лазерные фары состоят из одного или нескольких твердотельных лазерных диодов, установленных внутри фары. Эти синие лазеры воздействуют на желтый люминофор, подобный тому, который используется в белых светодиодах. Это создает мощный, яркий белый свет, который затем может отражаться от отражателей и фар по направлению к дороге. Лазерные фары, построенные таким образом, имеют несколько преимуществ. Они более энергоэффективны, чем светодиоды, которые излучают такое же количество света, а также занимают меньше места.

Футуристический i8 от BWM был одним из первых автомобилей с технологией лазерных фар.

Лазерные фары все еще являются зарождающейся технологией, пока что они появляются только в нескольких BMW, Audi и других избранных автомобилях. Технология BMW была разработана в сотрудничестве с экспертами по освещению OSRAM. На практике используется обычная светодиодная лампа ближнего света, а лазер используется для создания невероятно яркого и сфокусированного пятна, используемого для дальнего света. Это может обеспечить освещение на расстоянии до 600 метров впереди автомобиля, что вдвое больше, чем у обычных светодиодных фар дальнего света. В светильниках используются диодные лазеры на основе нитрида индия-галлия, которые изначально использовались в проекторах, с уровнем мощности более 1 Вт. Одной из проблем внедрения такой технологии в автомобильной среде является необходимость ее работы при экстремальных температурах. В то время как исследовательские лазеры и лазерные указки могут в основном использоваться при обычных комнатных температурах, автомобильные фары должны выдерживать любые температуры от 40 градусов ниже нуля до 50 градусов по Цельсию. К счастью, высокая эффективность лазера означает, что он не имеет огромной тепловой мощности. свое собственное, чтобы еще больше усложнить ситуацию. Другие инженерные задачи включают в себя адаптацию пакета оптики к суровым условиям с высокой вибрацией, характерным для автомобильного применения. Также важно обеспечить, как и в случае любого подобного устройства, что конечный пользователь не может подвергнуться вредному лазерному излучению в случае аварии или неисправности.

Разборка лазерной фары

Рекламное изображение, показывающее конструкцию вторичной светодиодной/лазерной фары. К мощности лазера мы относимся с долей скептицизма — трудно представить себе лазер мощностью 10 Вт, который светит прямо на несколько небольших светодиодов, не проплавляя дыру в плате в короткие сроки.

Появился также рынок запасных частей с восхитительно инновационным дизайном. На Alibaba легко доступны комбинированные лазерные/светодиодные фары, предназначенные для замены проекционных ламп на существующих автомобилях. В них часто используется светодиодный ближний свет и комбинированный светодиодный / лазерный дальний свет, где лазерный диод стреляет прямо в светодиодный люминофор, чтобы возбудить его дальше, а не использует свой собственный. Эти устройства часто также поставляются с вентиляторным охлаждением, чтобы поддерживать температуру лазера и светодиодов ниже их максимальной рабочей температуры. Такие разработки интересны, хотя важно опасаться характеристик неизвестных фар вторичного рынка. Многие «модернизированные» светодиодные фары послепродажного обслуживания не соответствуют требованиям, когда речь идет о реальных характеристиках, и нет никаких оснований полагать, что гибридные конструкции светодиодов и лазеров будут чем-то отличаться. Мы бы с удовольствием прошли некоторые из этих деталей через полный протокол испытаний IIHS, но это, к сожалению, выходит за рамки (и бюджета!) этой статьи.

Однако, [mikeselectricstuff] случайно забрал в свои руки как BMW, так и запасные части, разобрав их все в своей мастерской, чтобы посмотреть, что заставляет их работать. Различий множество, если их обнажить на скамейке. Часть AliExpress относительно проста, подключается так же, как и обычная фара. Интересно, однако, что в этих местах постоянно работает схема лазерного дальнего света. Чтобы не ослепить других участников дорожного движения, фара закрывается заслонкой, которая убирается с помощью соленоида, когда водитель включает переключатель дальнего света.

В то время как вторичный рынок немного выбивается из поля зрения, дизайн BMW — это совсем другое. Передовые фары подключаются с помощью нескольких разъемов и более 30 проводников, при этом большая часть электроники водителя находится во внешнем контроллере. Большая часть этого предназначена для управления различными светодиодами и шаговыми двигателями для поворота фар при рулевом управлении. Однако лазерная сборка имеет свои сложности. Внутри встроены двойные световые датчики для наблюдения за лазерным лучом, а специальный металлический блокирующий рычаг находится прямо перед диодом, предположительно, чтобы остановить лазерный луч, выходящий из фары, в случае прогорания люминофорного покрытия. Это действительно дико — заглянуть внутрь фары современного роскошного автомобиля и увидеть, как далеко мы ушли от старых времен простых закрытых лучей.

Затраты и производительность

Несмотря на доступное повышение эффективности, технология остается дорогой. В конце концов, мощные лазерные диоды недешевы. Однако по мере того, как технология распространяется на модели более низкого уровня, вполне вероятно, что мы увидим, как экономия за счет масштаба изменится к лучшему. Действительно, если национальные власти начнут требовать фары с более высокими характеристиками в качестве стандарта, мы можем увидеть, что лазерные фары станут нормой, а не дорогой роскошью. Эта технология, естественно, может быть применена и к домашнему и коммерческому освещению, хотя мы подозреваем, что потенциальные выгоды достаточно ограничены, чтобы светодиодное освещение оставалось нормой в течение некоторого времени.

Высокая светоотдача лазерных фар в компактном корпусе дает инженерам больше свободы при проектировании передней части автомобиля.

В настоящее время большая часть привлекательности новой технологии связана с преимуществами упаковки, которая дает автомобильным дизайнерам больше свободы в области фар. Такие опасения не имеют большого значения, когда речь идет о осветительных приборах дома или в офисе, или даже в автомобилях более низкого класса. Тем не менее, это захватывающее новое приложение для лазеров, и мы обязательно увидим его в будущем.

 

Лазерные фары могут сделать дороги ярче, а автомобили — умнее

Другими словами, ваши фары могут когда-нибудь передавать данные — хотя автопроизводители не работают над этим в данный момент. И не только ваши фары, но и все, что излучает искусственный свет. «Может быть с уличным фонарем, может быть со стоп-сигналами или знаками остановки», — говорит соучредитель Nakamura SLD Пол Руди. «Может быть даже лампочка внутри вашего дома, заменяющая ваш Wi-Fi-маршрутизатор». Если вы хотите избавиться от видимого света, эти системы прекрасно работают в инфракрасном диапазоне.

Это интересно в дороге, потому что автомобили имеют дело с большим количеством данных, чем когда-либо прежде. Эту технологию можно использовать для связи между транспортными средствами или между транспортными средствами и инфраструктурой. Передающие фары могли бы заменить некоторые функции современных радарных систем, используемых для адаптивного круиз-контроля и других систем безопасности в автомобиле, упаковав их в уже существующую систему, вместо того, чтобы создавать еще один набор детекторов. Это избавило бы инженеров и дизайнеров от необходимости бороться за ценную недвижимость на передней панели автомобиля или за его ветровым стеклом.

«Непросто найти несколько кубических сантиметров, чтобы упаковать модуль радара, кабель и все такое, — говорит Том ЛеМенс. Инженер из Детройта десятилетиями работал над радарами, лидарами и другими автомобильными системами связи, безопасности и датчиков и является изобретателем более 20 патентов, связанных с этими устройствами. «Поэтому решение, интегрированное где-то еще, может быть интересным».

Жаль, что проблемы, стоящие перед широким внедрением Li-Fi, кажутся почти столь же широкими, как и его потенциальные области применения. Первый вращается вокруг того факта, что технология требует видимой прямой видимости, поскольку свет не проходит за углы или сквозь стены. «Если вы хотите просто общаться с транспортными средствами, которые вы видите вокруг себя, то да, это может быть решением», — говорит Ле Менс. «Благодаря Li-Fi вы решили проблему пропускной способности, но это своего рода мост в никуда». (Это также относится и к домашнему использованию. Ваш телефон не смог бы принять сигнал Li-Fi, если бы он был в вашем кармане. Пора папе собраться и вернуть чехол для телефона на ремне?)

Стоимость также имеет значение. Почти все современные сетевые технологии помощи водителю работают в знакомом, устоявшемся и почти повсеместном спектре сотовой связи. Новая установка будет означать увеличение расходов на создание дополнительной инфраструктуры.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *